ﻻ يوجد ملخص باللغة العربية
We consider the $n$-component $|varphi|^4$ lattice spin model ($n ge 1$) and the weakly self-avoiding walk ($n=0$) on $mathbb{Z}^d$, in dimensions $d=1,2,3$. We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance $r$ as $r^{-(d+alpha)}$ with $alpha in (0,2)$. The upper critical dimension is $d_c=2alpha$. For $epsilon >0$, and $alpha = frac 12 (d+epsilon)$, the dimension $d=d_c-epsilon$ is below the upper critical dimension. For small $epsilon$, weak coupling, and all integers $n ge 0$, we prove that the two-point function at the critical point decays with distance as $r^{-(d-alpha)}$. This sticking of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.
Consider the long-range models on $mathbb{Z}^d$ of random walk, self-avoiding walk, percolation and the Ising model, whose translation-invariant 1-step distribution/coupling coefficient decays as $|x|^{-d-alpha}$ for some $alpha>0$. In the previous w
We consider long-range self-avoiding walk, percolation and the Ising model on $mathbb{Z}^d$ that are defined by power-law decaying pair potentials of the form $D(x)asymp|x|^{-d-alpha}$ with $alpha>0$. The upper-critical dimension $d_{mathrm{c}}$ is $
Random plane wave is conjectured to be a universal model for high-energy eigenfunctions of the Laplace operator on generic compact Riemanian manifolds. This is known to be true on average. In the present paper we discuss one of important geometric ob
This is a short review of the two papers on the $x$-space asymptotics of the critical two-point function $G_{p_c}(x)$ for the long-range models of self-avoiding walk, percolation and the Ising model on $mathbb{Z}^d$, defined by the translation-invari
In this paper, we investigate the behaviour of statistical physics models on a book with pages that are isomorphic to half-planes. We show that even for models undergoing a continuous phase transition on $mathbb Z^2$, the phase transition becomes dis