ﻻ يوجد ملخص باللغة العربية
We construct the exact partition function of the Potts model on a complete graph subject to external fields with linear and nematic type couplings. The partition function is obtained as a solution to a linear diffusion equation and the free energy, in the thermodynamic limit, follows from its semiclassical limit. Analysis of singularities of the equations of state reveals the occurrence of phase transitions of nematic type at not zero external fields and allows for an interpretation of the phase transitions in terms of shock dynamics in the space of thermodynamics variables. The approach is shown at work in the case of a q-state model for q=3 but the method generalises to arbitrary q.
We study mean-field classical $N$-vector models, for integers $Nge 2$. We use the theory of large deviations and Steins method to study the total spin and its typical behavior, specifically obtaining non-normal limit theorems at the critical temperat
The phase transitions of random-field q-state Potts models in d=3 dimensions are studied by renormalization-group theory by exact solution of a hierarchical lattice and, equivalently, approximate Migdal-Kadanoff solutions of a cubic lattice. The recu
We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. We derive formulas for the positions and the density of the zeros. In particular, we show that for models
The dynamical behavior of a star network of spins, wherein each of N decoupled spins interact with a central spin through non uniform Heisenberg XX interaction is exactly studied. The time-dependent Schrodinger equation of the spin system model is so
We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sa