ﻻ يوجد ملخص باللغة العربية
Modern graph clustering applications require the analysis of large graphs and this can be computationally expensive. In this regard, local spectral graph clustering methods aim to identify well-connected clusters around a given seed set of reference nodes without accessing the entire graph. The celebrated Approximate Personalized PageRank (APPR) algorithm in the seminal paper by Andersen et al. is one such method. APPR was introduced and motivated purely from an algorithmic perspective. In other words, there is no a priori notion of objective function/optimality conditions that characterizes the steps taken by APPR. Here, we derive a novel variational formulation which makes explicit the actual optimization problem solved by APPR. In doing so, we draw connections between the local spectral algorithm of and an iterative shrinkage-thresholding algorithm (ISTA). In particular, we show that, appropriately initialized ISTA applied to our variational formulation can recover the sought-after local cluster in a time that only depends on the number of non-zeros of the optimal solution instead of the entire graph. In the process, we show that an optimization algorithm which apparently requires accessing the entire graph, can be made to behave in a completely local manner by accessing only a small number of nodes. This viewpoint builds a bridge across two seemingly disjoint fields of graph processing and numerical optimization, and it allows one to leverage well-studied, numerically robust, and efficient optimization algorithms for processing todays large graphs.
Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is
Recent advances in deep learning have shown their ability to learn strong feature representations for images. The task of image clustering naturally requires good feature representations to capture the distribution of the data and subsequently differ
Local graph clustering and the closely related seed set expansion problem are primitives on graphs that are central to a wide range of analytic and learning tasks such as local clustering, community detection, nodes ranking and feature inference. Pri
The study of social networks is a burgeoning research area. However, most existing work deals with networks that simply encode whether relationships exist or not. In contrast, relationships in signed networks can be positive (like, trust) or negative
We propose a general variational framework of fair clustering, which integrates an original Kullback-Leibler (KL) fairness term with a large class of clustering objectives, including prototype or graph based. Fundamentally different from the existing