ﻻ يوجد ملخص باللغة العربية
Recent advances in deep learning have shown their ability to learn strong feature representations for images. The task of image clustering naturally requires good feature representations to capture the distribution of the data and subsequently differentiate data points from one another. Often these two aspects are dealt with independently and thus traditional feature learning alone does not suffice in partitioning the data meaningfully. Variational Autoencoders (VAEs) naturally lend themselves to learning data distributions in a latent space. Since we wish to efficiently discriminate between different clusters in the data, we propose a method based on VAEs where we use a Gaussian Mixture prior to help cluster the images accurately. We jointly learn the parameters of both the prior and the posterior distributions. Our method represents a true Gaussian Mixture VAE. This way, our method simultaneously learns a prior that captures the latent distribution of the images and a posterior to help discriminate well between data points. We also propose a novel reparametrization of the latent space consisting of a mixture of discrete and continuous variables. One key takeaway is that our method generalizes better across different datasets without using any pre-training or learnt models, unlike existing methods, allowing it to be trained from scratch in an end-to-end manner. We verify our efficacy and generalizability experimentally by achieving state-of-the-art results among unsupervised methods on a variety of datasets. To the best of our knowledge, we are the first to pursue image clustering using VAEs in a purely unsupervised manner on real image datasets.
Work in deep clustering focuses on finding a single partition of data. However, high-dimensional data, such as images, typically feature multiple interesting characteristics one could cluster over. For example, images of objects against a background
We propose a general variational framework of fair clustering, which integrates an original Kullback-Leibler (KL) fairness term with a large class of clustering objectives, including prototype or graph based. Fundamentally different from the existing
Deep learning has enabled algorithms to generate realistic images. However, accurately predicting long video sequences requires understanding long-term dependencies and remains an open challenge. While existing video prediction models succeed at gene
Modern graph clustering applications require the analysis of large graphs and this can be computationally expensive. In this regard, local spectral graph clustering methods aim to identify well-connected clusters around a given seed set of reference
Clustering is among the most fundamental tasks in computer vision and machine learning. In this paper, we propose Variational Deep Embedding (VaDE), a novel unsupervised generative clustering approach within the framework of Variational Auto-Encoder