ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Fair Clustering

186   0   0.0 ( 0 )
 نشر من قبل Imtiaz Ziko
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a general variational framework of fair clustering, which integrates an original Kullback-Leibler (KL) fairness term with a large class of clustering objectives, including prototype or graph based. Fundamentally different from the existing combinatorial and spectral solutions, our variational multi-term approach enables to control the trade-off levels between the fairness and clustering objectives. We derive a general tight upper bound based on a concave-convex decomposition of our fairness term, its Lipschitz-gradient property and the Pinskers inequality. Our tight upper bound can be jointly optimized with various clustering objectives, while yielding a scalable solution, with convergence guarantee. Interestingly, at each iteration, it performs an independent update for each assignment variable. Therefore, it can be easily distributed for large-scale datasets. This scalability is important as it enables to explore different trade-off levels between the fairness and clustering objectives. Unlike spectral relaxation, our formulation does not require computing its eigenvalue decomposition. We report comprehensive evaluations and comparisons with state-of-the-art methods over various fair-clustering benchmarks, which show that our variational formulation can yield highly competitive solutions in terms of fairness and clustering objectives.



قيم البحث

اقرأ أيضاً

Deep clustering (DC) has become the state-of-the-art for unsupervised clustering. In principle, DC represents a variety of unsupervised methods that jointly learn the underlying clusters and the latent representation directly from unstructured datase ts. However, DC methods are generally poorly applied due to high operational costs, low scalability, and unstable results. In this paper, we first evaluate several popular DC variants in the context of industrial applicability using eight empirical criteria. We then choose to focus on variational deep clustering (VDC) methods, since they mostly meet those criteria except for simplicity, scalability, and stability. To address these three unmet criteria, we introduce four generic algorithmic improvements: initial $gamma$-training, periodic $beta$-annealing, mini-batch GMM (Gaussian mixture model) initialization, and inverse min-max transform. We also propose a novel clustering algorithm S3VDC (simple, scalable, and stable VDC) that incorporates all those improvements. Our experiments show that S3VDC outperforms the state-of-the-art on both benchmark tasks and a large unstructured industrial dataset without any ground truth label. In addition, we analytically evaluate the usability and interpretability of S3VDC.
We extend the fair machine learning literature by considering the problem of proportional centroid clustering in a metric context. For clustering $n$ points with $k$ centers, we define fairness as proportionality to mean that any $n/k$ points are ent itled to form their own cluster if there is another center that is closer in distance for all $n/k$ points. We seek clustering solutions to which there are no such justified complaints from any subsets of agents, without assuming any a priori notion of protected subsets. We present and analyze algorithms to efficiently compute, optimize, and audit proportional solutions. We conclude with an empirical examination of the tradeoff between proportional solutions and the $k$-means objective.
In clustering problems, a central decision-maker is given a complete metric graph over vertices and must provide a clustering of vertices that minimizes some objective function. In fair clustering problems, vertices are endowed with a color (e.g., me mbership in a group), and the features of a valid clustering might also include the representation of colors in that clustering. Prior work in fair clustering assumes complete knowledge of group membership. In this paper, we generalize prior work by assuming imperfect knowledge of group membership through probabilistic assignments. We present clustering algorithms in this more general setting with approximation ratio guarantees. We also address the problem of metric membership, where different groups have a notion of order and distance. Experiments are conducted using our proposed algorithms as well as baselines to validate our approach and also surface nuanced concerns when group membership is not known deterministically.
In the application of data clustering to human-centric decision-making systems, such as loan applications and advertisement recommendations, the clustering outcome might discriminate against people across different demographic groups, leading to unfa irness. A natural conflict occurs between the cost of clustering (in terms of distance to cluster centers) and the balance representation of all demographic groups across the clusters, leading to a bi-objective optimization problem that is nonconvex and nonsmooth. To determine the complete trade-off between these two competing goals, we design a novel stochastic alternating balance fair $k$-means (SAfairKM) algorithm, which consists of alternating classical mini-batch $k$-means updates and group swap updates. The number of $k$-means updates and the number of swap updates essentially parameterize the weight put on optimizing each objective function. Our numerical experiments show that the proposed SAfairKM algorithm is robust and computationally efficient in constructing well-spread and high-quality Pareto fronts both on synthetic and real datasets. Moreover, we propose a novel companion algorithm, the stochastic alternating bi-objective gradient descent (SA2GD) algorithm, which can handle a smooth version of the considered bi-objective fair $k$-means problem, more amenable for analysis. A sublinear convergence rate of $mathcal{O}(1/T)$ is established under strong convexity for the determination of a stationary point of a weighted sum of the two functions parameterized by the number of steps or updates on each function.
In this paper, we focus on the fairness issues regarding unsupervised outlier detection. Traditional algorithms, without a specific design for algorithmic fairness, could implicitly encode and propagate statistical bias in data and raise societal con cerns. To correct such unfairness and deliver a fair set of potential outlier candidates, we propose Deep Clustering based Fair Outlier Detection (DCFOD) that learns a good representation for utility maximization while enforcing the learnable representation to be subgroup-invariant on the sensitive attribute. Considering the coupled and reciprocal nature between clustering and outlier detection, we leverage deep clustering to discover the intrinsic cluster structure and out-of-structure instances. Meanwhile, an adversarial training erases the sensitive pattern for instances for fairness adaptation. Technically, we propose an instance-level weighted representation learning strategy to enhance the joint deep clustering and outlier detection, where the dynamic weight module re-emphasizes contributions of likely-inliers while mitigating the negative impact from outliers. Demonstrated by experiments on eight datasets comparing to 17 outlier detection algorithms, our DCFOD method consistently achieves superior performance on both the outlier detection validity and two types of fairness notions in outlier detection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا