ﻻ يوجد ملخص باللغة العربية
We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wave function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.
We introduce a method for solving a self consistent electronic calculation within localized atomic orbitals, that allows us to converge to the complete basis set (CBS) limit in a stable, controlled, and systematic way. We compare our results with the
Quantum embedding theories are promising approaches to investigate strongly-correlated electronic states of active regions of large-scale molecular or condensed systems. Notable examples are spin defects in semiconductors and insulators. We present a
Electronic correlation energies from the random-phase approximation converge slowly with respect to the plane wave basis set size. We study the conditions, under which a short-range local density functional can be used to account for the basis set in
Daubechies wavelets are a powerful systematic basis set for electronic structure calculations because they are orthogonal and localized both in real and Fourier space. We describe in detail how this basis set can be used to obtain a highly efficient
The cost of the exact solution of the many-electron problem is believed to be exponential in the number of degrees of freedom, necessitating approximations that are controlled and accurate but numerically tractable. In this paper, we show that one of