ﻻ يوجد ملخص باللغة العربية
Electronic correlation energies from the random-phase approximation converge slowly with respect to the plane wave basis set size. We study the conditions, under which a short-range local density functional can be used to account for the basis set incompleteness error. Furthermore, we propose a one-shot extrapolation scheme based on the Lindhard response function of the homogeneous electron gas. The different basis set correction methods are used to calculate equilibrium lattice constants for prototypical solids of different bonding types.
We review the theory and application of adiabatic exchange-correlation (xc-) kernels for ab initio calculations of ground state energies and quasiparticle excitations within the frameworks of the adiabatic connection fluctuation dissipation theorem a
In order to increase the accuracy of the linearized augmented plane wave method (LAPW) we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization ene
The constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortona, Phys. Rev. B {bf 44}, 8454 (1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {bf 97}, 8050 (1993)) is applied with a
Coupled-cluster theory with single and double excitations (CCSD) is a promising ab initio method for the electronic structure of three-dimensional metals, for which second-order perturbation theory (MP2) diverges in the thermodynamic limit. However,
Accurately describing excited states within Kohn-Sham (KS) density functional theory (DFT), particularly those which induce ionization and charge transfer, remains a great challenge. Common exchange-correlation (xc) approximations are unreliable for