ﻻ يوجد ملخص باللغة العربية
We introduce a method for solving a self consistent electronic calculation within localized atomic orbitals, that allows us to converge to the complete basis set (CBS) limit in a stable, controlled, and systematic way. We compare our results with the ones obtained with a standard quantum chemistry package for the simple benzene molecule. We find perfect agreement for small basis set and show that, within our scheme, it is possible to work with a very large basis in an efficient and stable way. Therefore we can avoid to introduce any extrapolation to reach the CBS limit. In our study we have also carried out variational Monte Carlo (VMC) and lattice regularized diffusion Monte Carlo (LRDMC) with a standard many-body wave function (WF) defined by the product of a Slater determinant and a Jastrow factor. Once the Jastrow factor is optimized by keeping fixed the Slater determinant provided by our new scheme, we obtain a very good description of the atomization energy of the benzene molecule only when the basis of atomic orbitals is large enough and close to the CBS limit, yielding the lowest variational energies.
We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its en
We report exact expressions for atomic forces in the diffusion Monte Carlo (DMC) method when using nonlocal pseudopotentials. We present approximate schemes for estimating these expressions in both mixed and pure DMC calculations, including the pseud
We formulate the on-site occupation dependent exchange correlation energy and effective potential of hybrid functionals for localized states and connect them to the on-site correction term of the DFT+U method. Our derivation provides a theoretical ju
We derive an automatic procedure for generating a set of highly localized, non-orthogonal orbitals for linear scaling quantum Monte Carlo calculations. We demonstrate the advantage of these orbitals in calculations of the total energy of both semicon
We present an efficient, linear-scaling implementation for building the (screened) Hartree-Fock exchange (HFX) matrix for periodic systems within the framework of numerical atomic orbital (NAO) basis functions. Our implementation is based on the loca