ﻻ يوجد ملخص باللغة العربية
Daubechies wavelets are a powerful systematic basis set for electronic structure calculations because they are orthogonal and localized both in real and Fourier space. We describe in detail how this basis set can be used to obtain a highly efficient and accurate method for density functional electronic structure calculations. An implementation of this method is available in the ABINIT free software package. This code shows high systematic convergence properties, very good performances and an excellent efficiency for parallel calculations.
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energie
The constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortona, Phys. Rev. B {bf 44}, 8454 (1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {bf 97}, 8050 (1993)) is applied with a
A new method is presented for obtaining all-electron results from a pseudopotential calculation. This is achieved by carrying out a localised calculation in the region of an atomic nucleus using the embedding potential method of Inglesfield [J.Phys.
Recent experiments demonstrate the synthesis of 2D black arsenic exhibits excellent electronic and transport properties for nanoscale device applications. Herein, we study by first principle calculations density functional theory together with non eq
We present algorithms to numerically evaluate Daubechies wavelets and scaling functions to high relative accuracy. These algorithms refine the suggestion of Daubechies and Lagarias to evaluate functions defined by two-scale difference equations using