ﻻ يوجد ملخص باللغة العربية
$Ni_{50-x}Co_{x}Mn_{40}Sn_{10}$ shape memory alloys in the approximate range $5 le x le 10$ display desirable properties for applications as well as intriguing magnetism. These off-stoichiometric Heusler alloys undergo a martensitic phase transformation at a temperature $T_{M}$ of 300 - 400 K, from ferromagnetic (F) to nonferromagnetic, with unusually low thermal hysteresis and a large change in magnetization. The low temperature magnetic structures in the martensitic phase of such alloys, which are distinctly inhomogeneous, are of great interest but are not well understood. Our present use of spin echo NMR, in the large hyperfine fields at $^{55}Mn$ sites, provides compelling evidence that nanoscale magnetic phase separation into F and antiferromagnetic (AF) regions occurs below $T_{M}$ in alloys with x in the range 0 to 7. At finite Co substitution the F regions are found to be of two distinct types, corresponding to high and low local concentrations of Co on Ni sites. Estimates of the size distributions of both the F and AF nanoregions have been made. At x = 7 the AF component is not long-range ordered, even below 4 K, and is quite different to the AF component found at x = 0; by x = 14 the F phase is completely dominant. Of particular interest, we find, for x = 7, that field cooling leads to dramatic changes in the AF regions. These findings provide insight into the origins of magnetic phase separation and superparamagnetism in these complex alloys, particularly their intrinsic exchange bias, which is of considerable current interest.
We propose the phase diagram of a new pseudo-ternary compound, CoMnGe_{1-x}Sn_{x}, in the range x less than or equal to 0.1. Our phase diagram is a result of magnetic and calometric measurements. We demonstrate the appearance of a hysteretic magnetos
It is shown that a temperature window between the Curie temperatures of martensite and austenite phases around the room temperature can be obtained by a vacancy-tuning strategy in Mn-poor Mn1-xCoGe alloys (0 <= x <= 0.050). Based on this, a martensit
The magnetic properties of polycrystalline Tb(Co_{x}Ni_{1-x})_{2}B_{2}C (x=0.2,0.4,0.6,0.8) samples were probed by magnetization, specific heat, ac susceptibility, and resistivity techniques. For x{ eq}0.4, the obtained curves are consistent with the
Recent advances in antiferromagnetic spin dynamics using rare-earth (RE) and transition-metal (TM) ferrimagnets have attracted much interest for spintronic devices with a high speed and density. In this study, the spin wave properties in the magnetos
Using ab initio calculations and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in Ni-based solid-solution alloys: Ni_{0.5}Co_{0.5}, Ni_{0.5}Fe_{0.5}, Ni_{0.8}Fe_{0.2} and Ni_{0