ﻻ يوجد ملخص باللغة العربية
The magnetic properties of polycrystalline Tb(Co_{x}Ni_{1-x})_{2}B_{2}C (x=0.2,0.4,0.6,0.8) samples were probed by magnetization, specific heat, ac susceptibility, and resistivity techniques. For x{ eq}0.4, the obtained curves are consistent with the features expected for the corresponding magnetic modes, namely k_{1}=(0.55,0,0) at x=0; k_{2}=([nicefrac] icefrac{1}{2}</LaTeX>,0,[nicefrac]<LaTeX> icefrac{1}{2}) at x= 0.2; k_{3}=(0,0,[nicefrac] icefrac{1}{3}) at x= 0.6, and k_{4}=(0,0,0) at x= 0.8 and 1. For x=0.4, even though the neutron diffraction indicates a k_{2} mode, but with a reduced magnetic moment, the magnetization, the ac susceptibility, and resistivity indicate two magnetic events; furthermore, deviation from Curie-Weiss behavior is observed below 150 K for this sample. These features, together with the evolution of both magnetic moment and critical temperature, are attributed to an interplay between competing magnetic couplings; for the particular x=0.4 case, additional factors such as crystalline electric field effects may be in operation.
Neutron diffraction and thermodynamics techniques were used to probe the evolution of the magnetic properties of Tb(Co_{x}Ni_{1-x})_{2}B_{2}C. A succession of magnetic modes was observed as x is varied: the longitudinal modulated k=(0.55,0,0) state a
The evolution of the thermopower EuCu{2}(Ge{1-x}Si{x}){2} intermetallics, which is induced by the Si-Ge substitution, is explained by the Kondo scattering of conduction electrons on the Eu ions which fluctuate between the magnetic 2+ and non-magnetic
The magnetism of the double perovskite compounds SLFCOx ($x$ = 0, 1, 2) are contrasted using magnetization, neutron diffraction and electron paramagnetic resonance with the support from density functional theory calculations. LFCO is identified as a
We present a study of the evolution of magnetism from the quantum critical system YbRh2Si2 to the stable trivalent Yb system YbCo2Si2. Single crystals of Yb(Rh_(1-x)Co_x)2Si2 were grown for 0 < x < 1 and studied by means of magnetic susceptibility, e
The metamagnetic transitions in single-crystal rare-earth nickel borocarbide HoNi_{2}B_{2}C and ErNi_{2}B_{2}C have been studied at 1.9 K with a Quantum Design torque magnetometer. The critical fields of the transitions depend crucially on the angle