ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn_{1-x}CoGe alloys

213   0   0.0 ( 0 )
 نشر من قبل E.K. Liu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that a temperature window between the Curie temperatures of martensite and austenite phases around the room temperature can be obtained by a vacancy-tuning strategy in Mn-poor Mn1-xCoGe alloys (0 <= x <= 0.050). Based on this, a martensitic transformation from paramagnetic austenite to ferromagnetic martensite with a large magnetization difference can be realized in this window. This gives rise to a magnetic-field-induced martensitic transformation and a large magnetocaloric effect in the Mn1-xCoGe system. The decrease of the transformation temperature and of the thermal hysteresis of the transformation, as well as the stable Curie temperatures of martensite and austenite, are discussed on the basis of the Mn-poor Co-vacancy structure and the corresponding valence-electron concentration.



قيم البحث

اقرأ أيضاً

107 - T. Wojtowicz , W.L. Lim , X. Liu 2003
We discuss a new narrow-gap ferromagnetic (FM) semiconductor alloy, In(1-x)Mn(x)Sb, and its growth by low-temperature molecular-beam epitaxy. The magnetic properties were investigated by direct magnetization measurements, electrical transport, magnet ic circular dichroism, and the magneto-optical Kerr effect. These data clearly indicate that In(1-x)Mn(x)Sb possesses all the attributes of a system with carrier-mediated FM interactions, including well-defined hysteresis loops, a cusp in the temperature dependence of the resistivity, strong negative magnetoresistance, and a large anomalous Hall effect. The Curie temperatures in samples investigated thus far range up to 8.5 K, which are consistent with a mean-field-theory simulation of the carrier-induced ferromagnetism based on the 8-band effective band-orbital method.
A delicate balance between various factors such as site occupancy, composition and magnetic ordering seems to affect the stability of the martensitic phase in Mn$_{2}$Ni$_{1+x}$Sn$_{1-x}$. Using first-principles DFT calculations, we explore the impac ts of each one of these factors on the martensitic stability of this system. Our results on total energies, magnetic moments and electronic structures upon changes in the composition, the magnetic configurations and the site occupancies show that the occupancies at the 4d sites in the Inverse Heusler crystal structure play the most crucial role. The presence of Mn at the 4d sites originally occupied by Sn and its interaction with the Mn atoms at other sites decide the stability of the martensitic phases. This explains the discrepancy between the experiments and earlier DFT calculations regarding phase stability in Mn$_{2}$NiSn. Our results qualitatively explain the trends observed experimentally with regard to martensitic phase stability and the magnetisations in Ni-excess, Sn-deficient Mn$_{2}$NiSn system.
Ni$_{50}$Mn$_{34}$In$_{16}$ undergoes a martensitic transformation around 250 K and exhibits a field induced reverse martensitic transformation and substantial magnetocaloric effects. We substitute small amounts Ga for In, which are isoelectronic, to carry these technically important properties to close to room temperature by shifting the martensitic transformation temperature.
127 - Somnath Jana 2018
Element specific ultrafast demagnetization was studied in Fe$_{1-x}$Ni$_{x}$ alloys, covering the concentration range between $0.1<x<0.9$. For all compositions, we observe a delay in the onset of Ni demagnetization relative to the Fe demagnetization. We find that the delay is correlated to the Curie temperature and hence also the exchange interaction. The temporal evolution of demagnetization is fitted to a magnon diffusion model based on the presupposition of enhanced ultrafast magnon generation in the Fe sublattice. The spin wave stiffness extracted from this model correspond well to known experimental values.
We introduce a novel method for local structure determination with a spatial resolution of the order of 0.01 Angstroem. It can be applied to materials containing clusters of exchange-coupled magnetic atoms. We use neutron spectroscopy to probe the en ergies of the cluster excitations which are determined by the interatomic coupling strength J. Since for most materials J is related to the interatomic distance R through a linear relation dJ/dR={alpha} (for dR/R<<1), we can directly derive the local distance R from the observed excitation energies. This is exemplified for the mixed one-dimensional paramagnetic compound CsMnxMg1 xBr3 (x=0.05, 0.10) containing manganese dimers oriented along the hexagonal c-axis. Surprisingly, the resulting Mn-Mn distances R do not vary continuously with increasing internal pressure, but lock in at some discrete values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا