ﻻ يوجد ملخص باللغة العربية
We report on the confinement of a Bose-Einstein condensate in an annular trap with widely tunable parameters. The trap relies on a combination of magnetic, optical and radio-frequency fields. The loading procedure is discussed. We present annular traps with radii adjusted between 20 and 150 micrometers. We demonstrate the preparation of persistent flows both with a rotating laser stirrer and with a global quadrupole deformation of the ring.Our setup is well adapted for the study of superfluid dynamics.
We study the stability of persistent currents in a coherently coupled quasi-2D Bose-Einstein condensate confined in a ring trap at T=0. By numerically solving Gross-Pitaevskii equations and by analyzing the excitation spectrum obtained from diagonali
Rapidly scanning magnetic and optical dipole traps have been widely utilised to form time-averaged potentials for ultracold quantum gas experiments. Here we theoretically and experimentally characterise the dynamic properties of Bose-Einstein condens
One of the most important applications of quantum mechanics is the thermodynamic description of quantum gases. Despite the fundamental importance of this topic, a comprehensive description of the thermodynamic properties of non-Hermitian quantum gase
We demonstrate the feasibility of generation of quasi-stable counter-propagating solitonic structures in an atomic Bose-Einstein condensate confined in a realistic toroidal geometry, and identify optimal parameter regimes for their experimental obser
Turbulence is characterized by a large number of degrees of freedom, distributed over several length scales, that result into a disordered state of a fluid. The field of quantum turbulence deals with the manifestation of turbulence in quantum fluids,