ﻻ يوجد ملخص باللغة العربية
We report a systematic strengthening of the local solar surface or fundamental $f$-mode $1$-$2$ days prior to the emergence of an active region (AR) in the same (corotating) location. Except for a possibly related increase in the kurtosis of the magnetic field, no indication can be seen in the magnetograms at that time. Our study is motivated by earlier numerical findings of Singh et al. (2014) which showed that, in the presence of a nonuniform magnetic field that is concentrated a few scale heights below the surface, the $f$-mode fans out in the diagnostic $komega$ diagram at high wavenumbers. Here we explore this possibility using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and show for six isolated ARs, 11130, 11158, 11242, 11105, 11072, and 11768, that at large latitudinal wavenumbers (corresponding to horizontal scales of around 3000 km), the $f$-mode displays strengthening about two days prior to AR formation and thus provides a new precursor for AR formation. Furthermore, we study two ARs, 12051 and 11678, apart from a magnetically quiet patch lying next to AR~12529, to demonstrate the challenges in extracting such a precursor signal when a newly forming AR emerges in a patch that lies in close proximity of one or several already existing ARs which are expected to pollute neighboring patches. We then discuss plausible procedures for extracting precursor signals from regions with crowded environments. The idea that the $f$-mode is perturbed days before any visible magnetic activity occurs at the surface can be important in constraining dynamo models aimed at understanding the global magnetic activity of the Sun.
We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal FeXII 1349.4A emission at unprecedented high spatial resolution (~0.33). We find that by using approp
Both coronal holes and active regions are source regions of the solar wind. The distribution of these coronal structures across both space and time is well known, but it is unclear how much each source contributes to the solar wind. In this study we
Active regions are thought to be one contributor to the slow solar wind. Upflows in EUV coronal spectral lines are routinely osberved at their boundaries, and provide the most direct way for upflowing material to escape into the heliosphere. The mech
Coronal loops are building blocks of solar active regions. However, their formation mechanism is still not well understood. Here we present direct observational evidence for the formation of coronal loops through magnetic reconnection as new magnetic
We investigate the role of active region spicules in the mass balance of the solar wind and energy supply for heating the solar atmosphere. We use high cadence observations from the Solar Optical Telescope (SOT) onboard the Hinode satellite in the Ca