ﻻ يوجد ملخص باللغة العربية
Active regions are thought to be one contributor to the slow solar wind. Upflows in EUV coronal spectral lines are routinely osberved at their boundaries, and provide the most direct way for upflowing material to escape into the heliosphere. The mechanisms that form and drive these upflows, however, remain to be fully characterised. It is unclear how quickly they form, or how long they exist during their lifetimes. They could be initiated low in the atmosphere during magnetic flux emergence, or as a response to processes occuring high in the corona when the active region is fully developed. On 2019, March 31, a simple bipolar active region (AR 12737) emerged and upflows developed on each side. We used observations from Hinode, SDO, IRIS, and Parker Solar Probe (PSP) to investigate the formation and development of the upflows from the eastern side. We used the spectroscopic data to detect the upflow, and then used the imaging data to try to trace its signature back to earlier in the active region emergence phase. We find that the upflow forms quickly, low down in the atmosphere, and that its initiation appears associated with a small field-opening eruption and the onset of a radio noise storm detected by PSP. We also confirmed that the upflows existed for the vast majority of the time the active region was observed. These results suggest that the contribution to the solar wind occurs even when the region is small, and continues for most of its lifetime.
Plasma outflows from the edges of active regions have been suggested as a possible source of the slow solar wind. Spectroscopic measurements show that these outflows have an enhanced elemental composition, which is a distinct signature of the slow wi
Recent observations from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode have shown that low density areas on the periphery of active regions are characterized by strong blue-shifts at 1 MK. These Doppler shifts have been associate
In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmos
An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines CaII K, Halpha and Na
We compute for the first time magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20^o southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic re