ﻻ يوجد ملخص باللغة العربية
We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal FeXII 1349.4A emission at unprecedented high spatial resolution (~0.33). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), FeXII emission can be studied with IRIS at high spatial and spectral resolution, at least for high density plasma (e.g., post-flare loops, and active region moss). We find that upper transition region (moss) FeXII emission shows very small average Doppler redshifts (v_Dop ~3 km/s), as well as modest non-thermal velocities (with an average ~24 km/s, and the peak of the distribution at ~15 km/s). The observed distribution of Doppler shifts appears to be compatible with advanced 3D radiative MHD simulations in which impulsive heating is concentrated at the transition region footpoints of a hot corona. While the non-thermal broadening of FeXII 1349.4A peaks at similar values as lower resolution simultaneous Hinode/EIS measurements of FeXII 195A, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4A FeXII intensity ratios and those predicted by the CHIANTI atomic database.
The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can
The mechanism behind the shaping of bipolar planetary nebulae is still poorly understood. Accurately tracing the molecule-rich equatorial regions of post-AGB stars can give valuable insight into the ejection mechanisms at work. We investigate the phy
We aim to investigate the temperature enhancements and formation heights of impulsive heating phenomena in solar active-regions such as Ellerman bombs (EBs), ultraviolet bursts (UVBs), and flaring active-region fibrils (FAFs) using interferometric ob
A wide variety of phenomena such as gentle but persistent brightening, dynamic slender features (~100 km), and compact (~1) ultraviolet (UV) bursts are associated with the heating of the solar chromosphere. High spatio-temporal resolution is required
NASAs Interface Region Imaging Spectrograph (IRIS) provides high resolution observations of the solar atmosphere through UV spectroscopy and imaging. Since the launch of IRIS in June 2013, we have conducted systematic observation campaigns in coordin