ﻻ يوجد ملخص باللغة العربية
Coronal loops are building blocks of solar active regions. However, their formation mechanism is still not well understood. Here we present direct observational evidence for the formation of coronal loops through magnetic reconnection as new magnetic fluxes emerge into the solar atmosphere. Extreme-ultraviolet observations of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) clearly show the newly formed loops following magnetic reconnection within a plasma sheet. Formation of the loops is also seen in the h{alpha} line-core images taken by the New Vacuum Solar Telescope. Observations from the Helioseismic and Magnetic Imager onboard SDO show that a positive-polarity flux concentration moves towards a negative-polarity one with a speed of ~0.4 km/s, before the formation of coronal loops. During the loop formation process, we found signatures of flux cancellation and subsequent enhancement of the transverse field between the two polarities. The three-dimensional magnetic field structure reconstructed through a magnetohydrostatic model shows field lines consistent with the loops in AIA images. Numerous bright blobs with an average width of 1.37 Mm appear intermittently in the plasma sheet and move upward with a projected velocity of ~114 km/s. The temperature, emission measure and density of these blobs are about 3 MK, 2.0x10^(28) cm^(-5) and 1.2x10^(10) cm^(-3), respectively. A power spectral analysis of these blobs indicates that the observed reconnection is likely not dominated by a turbulent process. We have also identified flows with a velocity of 20 to 50 km/s towards the footpoints of the newly formed coronal loops.
The characteristic electron densities, temperatures, and thermal distributions of 1MK active region loops are now fairly well established, but their coronal magnetic field strengths remain undetermined. Here we present measurements from a sample of c
Employing Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we report the coronal condensation during the magnetic reconnection (MR) between a system of open and closed coronal loops. Higher-lying magnetical
Coronal loops interconnecting two active regions, called as interconnecting loops (ILs), are prominent large-scale structures in the solar atmosphere. They carry a significant amount of magnetic flux, therefore are considered to be an important eleme
Magnetic reconnection, the rearrangement of magnetic field topology, is a fundamental physical process in magnetized plasma systems all over the universe1,2. Its process is difficult to be directly observed. Coronal structures, such as coronal loops
We study the formation of transient loops in the core of the AR 11890. For this purpose, we have used the observations recorded by the Atmospheric Imaging Assembly (AIA) and the Interface Region Imaging Spectrograph (IRIS). For photospheric field con