ﻻ يوجد ملخص باللغة العربية
An approach is presented for the atomistic study of phonon transport in real dielectric nanowires via Green functions. The formalism is applied to investigate the phonon flow through nanowires coated by an amorphous material. Examples for a simple model system, and for real Si nanowires coated by silica are given. New physical results emerge for these systems, regarding the character of the transition from ballistic to diffusive transport, the low temperature thermal conductance, and the influence of the wire-coating interface on the thermal transport. An efficient treatment of phonon scattering by the amorphous coating is also developed, representing a valuable tool for the investigation of thermal conduction through amorphous-coated nanowires.
We present experimental measurements of the thermal boundary conductance (TBC) from $77 - 500$ K across isolated heteroepitaxially grown ZnO films on GaN substrates. These data provide an assessment of the assumptions that drive the phonon gas model-
We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wave function based full ab initio description of the central region of the junction combined with a tight binding appro
UV Raman scattering studies show longitudinal optical (LO) mode up to 4th order in wurtzite GaN nanowire system. Frohlich interaction of electron with the long range electrostatic field of ionic bonded GaN gives rise to enhancement in LO phonon modes
Molecular dynamics simulations have been performed to understand the influence of temperature on the tensile deformation and fracture behavior of $<$111$>$ BCC Fe nanowires. The simulations have been carried out at different temperatures in the range
Experimental observation of highly reduced thermal conductivity in surface-roughness dominated silicon nanowires have generated renewed interest in low-dimensional thermoelectric devices. Using a previous work where the scattering of phonons from a r