ترغب بنشر مسار تعليمي؟ اضغط هنا

Supercooling of Atoms in an Optical Resonator

281   0   0.0 ( 0 )
 نشر من قبل Minghui Xu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate that when atomic dipoles are sychronized in the regime of steady-state superradiance, the motion of the atoms may be subject to a giant frictional force leading to potentially very low temperatures. The ultimate temperature limits are determined by a modified atomic linewidth, which can be orders of magnitude smaller than the cavity linewidth. The cooling rate is enhanced by the superradiant emission into the cavity mode allowing reasonable cooling rates even for dipolar transitions with ultranarrow linewidth.



قيم البحث

اقرأ أيضاً

111 - V. S. Malinovsky , K. R. Moore , 2019
We develop and study quantum and semi-classical models of Rydberg-atom spectroscopy in amplitude-modulated optical lattices. Both initial- and target-state Rydberg atoms are trapped in the lattice. Unlike in any other spectroscopic scheme, the modula tion-induced ponderomotive coupling between the Rydberg states is spatially periodic and perfectly phase-locked to the lattice trapping potentials. This leads to a novel type of sub-Doppler mechanism, which we explain in detail. In our exact quantum model, we solve the time-dependent Schrodinger equation in the product space of center-of-mass (COM) momentum states and the internal-state space. We also develop a perturbative model based on the band structure in the lattice and Fermis golden rule, as well as a semi-classical trajectory model in which the COM is treated classically and the internal-state dynamics quantum-mechanically. In all models we obtain the spectrum of the target Rydberg-state population versus the lattice modulation frequency, averaged over the initial thermal COM momentum distribution of the atoms. We investigate the quantum-classical correspondence of the problem in several parameter regimes and exhibit spectral features that arise from vibrational COM coherences and rotary-echo effects. Applications in Rydberg-atom spectroscopy are discussed.
We present detailed discussions of cooling and trapping mechanisms for an atom in an optical trap inside an optical cavity, as relevant to recent experiments. The interference pattern of cavity QED and trapping fields in space makes the trapping well s distinguishable from one another. This adds considerable flexibility to creating effective trapping and cooling conditions and to detection possibilities. Friction and diffusion coefficients are calculated in and beyond the low excitation limit and full 3-D simulations of the quasiclassical motion of a Cs atom are performed.
We report on the observation of multimode strong coupling of a small ensemble of atoms interacting with the field of a 30-m long fiber resonator containing a nanofiber section. The collective light--matter coupling strength exceeds the free spectral range and the atoms couple to consecutive longitudinal resonator modes. The measured transmission spectra of the coupled atom-resonator system provide evidence of this regime, realized with a few hundred atoms with an intrinsic single-atom cooperativity of 0.26. These results are the starting point for studies in a new setting of light-matter interaction, with strong quantum non-linearities and a new type of dynamics.
We consider a pair of artificial atoms with different ground state energies. By means of finite element calculations we predict that the ground state energies can be tuned into resonance if the artificial atoms are placed into a flexible ring structu re, which is elastically deformed by an external force. This concept is experimentally verified by embedding a low density of self-assembled quantum dots into the wall of a rolled up micro tube ring resonator. We demonstrate that quantum dots can elastically be tuned in- and out of resonance with each other or with the ring resonator modes.
We propose a new quantum-computing scheme using ultracold neutral ytterbium atoms in an optical lattice. The nuclear Zeeman sublevels define a qubit. This choice avoids the natural phase evolution due to the magnetic dipole interaction between qubits . The Zeeman sublevels with large magnetic moments in the long-lived metastable state are also exploited to address individual atoms and to construct a controlled-multiqubit gate. Estimated parameters required for this scheme show that this proposal is scalable and experimentally feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا