ترغب بنشر مسار تعليمي؟ اضغط هنا

Modulation spectroscopy of Rydberg atoms in an optical lattice

112   0   0.0 ( 0 )
 نشر من قبل Vladimir S. Malinovsky
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop and study quantum and semi-classical models of Rydberg-atom spectroscopy in amplitude-modulated optical lattices. Both initial- and target-state Rydberg atoms are trapped in the lattice. Unlike in any other spectroscopic scheme, the modulation-induced ponderomotive coupling between the Rydberg states is spatially periodic and perfectly phase-locked to the lattice trapping potentials. This leads to a novel type of sub-Doppler mechanism, which we explain in detail. In our exact quantum model, we solve the time-dependent Schrodinger equation in the product space of center-of-mass (COM) momentum states and the internal-state space. We also develop a perturbative model based on the band structure in the lattice and Fermis golden rule, as well as a semi-classical trajectory model in which the COM is treated classically and the internal-state dynamics quantum-mechanically. In all models we obtain the spectrum of the target Rydberg-state population versus the lattice modulation frequency, averaged over the initial thermal COM momentum distribution of the atoms. We investigate the quantum-classical correspondence of the problem in several parameter regimes and exhibit spectral features that arise from vibrational COM coherences and rotary-echo effects. Applications in Rydberg-atom spectroscopy are discussed.

قيم البحث

اقرأ أيضاً

The linear Faraday effect is used to implement a continuous measurement of the spin of a sample of laser cooled atoms trapped in an optical lattice. One of the optical lattice beams serves also as a probe beam, thereby allowing one to monitor the ato mic dynamics in real time and with minimal perturbation. A simple theory is developed to predict the measurement sensitivity and associated cost in terms of decoherence caused by the scattering of probe photons. Calculated signal-to-noise ratios in measurements of Larmor precession are found to agree with experimental data for a wide range of lattice intensity and detuning. Finally, quantum backaction is estimated by comparing the measurement sensitivity to spin projection noise, and shown to be insignificant in the current experiment. A continuous quantum measurement based on Faraday spectroscopy in optical lattices may open up new possibilities for the study of quantum feedback and classically chaotic quantum systems.
Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahe rtz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, $sim 3 mu V cm^{-1}Hz^{-1/2}$ sensitivity is achieved and is found to be photon shot noise limited.
We demonstrate experimentally that a single Rb atom excited to the $79d_{5/2}$ level blocks the subsequent excitation of a second atom located more than $10 murm m$ away. The observed probability of double excitation of $sim 30%$ is consistent with a theoretical model based on calculations of the long range dipole-dipole interaction between atoms.
Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: l oading of single atoms into individual traps, state initialization, state readout, single atom rotations, blockade-mediated manipulation of Rydberg atoms, and demonstration of entanglement.
We demonstrate spatially resolved, coherent excitation of Rydberg atoms on an atom chip. Electromagnetically induced transparency (EIT) is used to investigate the properties of the Rydberg atoms near the gold coated chip surface. We measure distance dependent shifts (~10 MHz) of the Rydberg energy levels caused by a spatially inhomogeneous electric field. The measured field strength and distance dependence is in agreement with a simple model for the electric field produced by a localized patch of Rb adsorbates deposited on the chip surface during experiments. The EIT resonances remain narrow (< 4 MHz) and the observed widths are independent of atom-surface distance down to ~20 mum, indicating relatively long lifetime of the Rydberg states. Our results open the way to studies of dipolar physics, collective excitations, quantum metrology and quantum information processing involving interacting Rydberg excited atoms on atom chips.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا