ﻻ يوجد ملخص باللغة العربية
We consider a pair of artificial atoms with different ground state energies. By means of finite element calculations we predict that the ground state energies can be tuned into resonance if the artificial atoms are placed into a flexible ring structure, which is elastically deformed by an external force. This concept is experimentally verified by embedding a low density of self-assembled quantum dots into the wall of a rolled up micro tube ring resonator. We demonstrate that quantum dots can elastically be tuned in- and out of resonance with each other or with the ring resonator modes.
We propose a scheme for a two-qubit conditional phase gate by quantum Zeno effect with semiconductor quantum dots. The system consists of two charged dots and one ancillary dot that can perform Rabi oscillations under a resonant laser pulse. The quan
We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate that when atomic dipoles are sychronized in the regime of steady-state superradiance, the motion of the atoms may be subject to a giant frictional force leading
We obtain a microscopic description of the interaction between electron spins in bulk semiconductors and in pairs of semiconductor quantum dots. Treating the k.p band mixing and the Coulomb interaction on the same footing, we obtain in the third orde
We demonstrate electromagnetic interaction between distant quantum dots (QDs), as is observed from transient pump-probe differential reflectivity measurements. The QD-exciton lifetime is measured as a function of the probe photon energy and shows a s
We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect