ﻻ يوجد ملخص باللغة العربية
We report on the observation of multimode strong coupling of a small ensemble of atoms interacting with the field of a 30-m long fiber resonator containing a nanofiber section. The collective light--matter coupling strength exceeds the free spectral range and the atoms couple to consecutive longitudinal resonator modes. The measured transmission spectra of the coupled atom-resonator system provide evidence of this regime, realized with a few hundred atoms with an intrinsic single-atom cooperativity of 0.26. These results are the starting point for studies in a new setting of light-matter interaction, with strong quantum non-linearities and a new type of dynamics.
We realize a mechanical analogue of the Dicke model, achieved by coupling the spin of individual neutral atoms to their quantized motion in an optical trapping potential. The atomic spin states play the role of the electronic states of the atomic ens
We experimentally demonstrate a ring geometry all-fiber cavity system for cavity quantum electrodynamics with an ensemble of cold atoms. The fiber cavity contains a nanofiber section which mediates atom-light interactions through an evanescent field.
We present experiments on ensemble cavity quantum electrodynamics with cold potassium atoms in a high-finesse ring cavity. Potassium-39 atoms are cooled in a two-dimensional magneto-optical trap and transferred to a three-dimensional trap which inter
The study of light-matter interaction has seen a resurgence in recent years, stimulated by highly controllable, precise, and modular experiments in cavity quantum electrodynamics (QED). The achievement of strong coupling, where the coupling between a
Cavity electro-(opto-)mechanics allows us to access not only single isolated but also multiple mechanical modes in a massive object. Here we develop a multi-mode electromechanical system in which a several membrane vibrational modes are coupled to a