ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the Standardization of Non-orthogonal Multiple Access for Next Generation Wireless Networks

134   0   0.0 ( 0 )
 نشر من قبل Yan Chen Dr.
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-orthogonal multiple access (NoMA) as an efficient way of radio resource sharing can root back to the network information theory. For generations of wireless communication systems design, orthogonal multiple access (OMA) schemes in time, frequency, or code domain have been the main choices due to the limited processing capability in the transceiver hardware, as well as the modest traffic demands in both latency and connectivity. However, for the next generation radio systems, given its vision to connect everything and the much evolved hardware capability, NoMA has been identified as a promising technology to help achieve all the targets in system capacity, user connectivity, and service latency. This article will provide a systematic overview of the state-of-the-art design of the NoMA transmission based on a unified transceiver design framework, the related standardization progress, and some promising use cases in future cellular networks, based on which the interested researchers can get a quick start in this area.

قيم البحث

اقرأ أيضاً

We introduce clustered millimeter wave networks with invoking non-orthogonal multiple access~(NOMA) techniques, where the NOMA users are modeled as Poisson cluster processes and each cluster contains a base station (BS) located at the center. To prov ide realistic directional beamforming, an actual antenna array pattern is deployed at all BSs. We propose three distance-dependent user selection strategies to appraise the path loss impact on the performance of our considered networks. With the aid of such strategies, we derive tractable analytical expressions for the coverage probability and system throughput. Specifically, closed-form expressions are deduced under a sparse network assumption to improve the calculation efficiency. It theoretically demonstrates that the large antenna scale benefits the near user, while such influence for the far user is fluctuant due to the randomness of the beamforming. Moreover, the numerical results illustrate that: 1) the proposed system outperforms traditional orthogonal multiple access techniques and the commonly considered NOMA-mmWave scenarios with the random beamforming; 2) the coverage probability has a negative correlation with the variance of intra-cluster receivers; 3) 73 GHz is the best carrier frequency for near user and 28 GHz is the best choice for far user; 4) an optimal number of the antenna elements exists for maximizing the system throughput.
This paper aims to provide a comprehensive solution for the design, analysis, and optimization of a multiple-antenna non-orthogonal multiple access (NOMA) system for multiuser downlink communication with both time duplex division (TDD) and frequency duplex division (FDD) modes. First, we design a new framework for multiple-antenna NOMA, including user clustering, channel state information (CSI) acquisition, superposition coding, transmit beamforming, and successive interference cancellation (SIC). Then, we analyze the performance of the considered system, and derive exact closed-form expressions for average transmission rates in terms of transmit power, CSI accuracy, transmission mode, and channel conditions. For further enhancing the system performance, we optimize three key parameters, i.e., transmit power, feedback bits, and transmission mode. Especially, we propose a low-complexity joint optimization scheme, so as to fully exploit the potential of multiple-antenna techniques in NOMA. Moreover, through asymptotic analysis, we reveal the impact of system parameters on average transmission rates, and hence present some guidelines on the design of multiple-antenna NOMA. Finally, simulation results validate our theoretical analysis, and show that a substantial performance gain can be obtained over traditional orthogonal multiple access (OMA) technology under practical conditions.
83 - Jie Gong , Xiang Chen 2017
Non-orthogonal multiple access (NOMA) is a candidate multiple access scheme in 5G systems for the simultaneous access of tremendous number of wireless nodes. On the other hand, RF-enabled wireless energy harvesting is a promising technology for self- sustainable wireless nodes. In this paper, we consider a NOMA system where the near user harvests energy from the strong radio signal to power-on the information decoder. A generalized energy harvesting scheme is proposed by combining the conventional time switching and power splitting scheme. The achievable rate region of the proposed scheme is characterized under both constant and dynamic decoding power consumption models. If the decoding power is constant, the achievable rate region can be found by solving two convex optimization subproblems, and the regions for two special cases: time switching and power splitting, are characterized in closed-form. If the decoding power is proportional to data rate, the achievable rate region can be found by exhaustive search algorithm. Numerical results show that the achievable rate region of the proposed generalized scheme is larger than those of time switching scheme and power splitting scheme, and rate-dependent decoder design helps to enlarge the achievable rate region.
Non-orthogonal multiple access (NOMA) is one of the key techniques to address the high spectral efficiency and massive connectivity requirements for the fifth generation (5G) wireless system. To efficiently realize NOMA, we propose a joint design fra mework combining the polar coding and the NOMA transmission, which deeply mines the generalized polarization effect among the users. In this polar coded NOMA (PC-NOMA) framework, the original NOMA channel is decomposed into multiple bit polarized channels by using a three-stage channel transform, that is, user$to$signal$to$bit partitions. Specifically, for the first-stage channel transform, we design two schemes, namely sequential user partition (SUP) and parallel user partition (PUP). For the SUP, a joint successive cancellation detecting and decoding scheme is developed, and a search algorithm is proposed to schedule the NOMA detecting order which improves the system performance by enhanced polarization among the user synthesized channels. The worst-goes-first idea is employed in the scheduling strategy, and its theoretic performance is analyzed by using the polarization principle. For the PUP, a corresponding parallel detecting scheme is exploited to reduce the latency. The block error ratio performances over the additive white Gaussian noise channel and the Rayleigh fading channel indicate that the proposed PC-NOMA obviously outperforms the state-of-the-art turbo coded NOMA scheme due to the advantages of joint design between the polar coding and NOMA.
The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as optical- non-orthogonal multiple access (O-NOMA), which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا