ترغب بنشر مسار تعليمي؟ اضغط هنا

تقنيات الاستشعار الضغطي للاتصالات اللاسلكية الجديدة الأجيال

Compressive Sensing Techniques for Next-Generation Wireless Communications

534   0   0.0 ( 0 )
 نشر من قبل Zhen Gao
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A range of efficient wireless processes and enabling techniques are put under a magnifier glass in the quest for exploring different manifestations of correlated processes, where sub-Nyquist sampling may be invoked as an explicit benefit of having a sparse transform-domain representation. For example, wide-band next-generation systems require a high Nyquist-sampling rate, but the channel impulse response (CIR) will be very sparse at the high Nyquist frequency, given the low number of reflected propagation paths. This motivates the employment of compressive sensing based processing techniques for frugally exploiting both the limited radio resources and the network infrastructure as efficiently as possible. A diverse range of sophisticated compressed sampling techniques is surveyed and we conclude with a variety of promising research ideas related to large-scale antenna arrays, non-orthogonal multiple access (NOMA), and ultra-dense network (UDN) solutions, just to name a few.



قيم البحث

اقرأ أيضاً

Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble of signals that has single common information cite{Baron:2009vd}. In this paper, we propose a generalized DCS (GDCS) which can improve sparse signal detection performance given arbitrary types of common information which are classified into not just full common information but also a variety of partial common information. The theoretical bound on the required number of measurements using the GDCS is obtained. Unfortunately, the GDCS may require much a priori-knowledge on various inter common information of ensemble of signals to enhance the performance over the existing DCS. To deal with this problem, we propose a novel algorithm that can search for the correlation structure among the signals, with which the proposed GDCS improves detection performance even without a priori-knowledge on correlation structure for the case of arbitrarily correlated multi signal ensembles.
In this article, we overview intelligent reflecting surface (IRS)-empowered wireless communication systems. We first present the fundamentals of IRS-assisted wireless transmission. On this basis, we explore the integration of IRS with various advance d transmission technologies, such as millimeter wave, non-orthogonal multiple access, and physical layer security. Following this, we discuss the effects of hardware impairments and imperfect channel-state-information on the IRS system performance. Finally, we highlight several open issues to be addressed.
Non-orthogonal multiple access (NoMA) as an efficient way of radio resource sharing can root back to the network information theory. For generations of wireless communication systems design, orthogonal multiple access (OMA) schemes in time, frequency , or code domain have been the main choices due to the limited processing capability in the transceiver hardware, as well as the modest traffic demands in both latency and connectivity. However, for the next generation radio systems, given its vision to connect everything and the much evolved hardware capability, NoMA has been identified as a promising technology to help achieve all the targets in system capacity, user connectivity, and service latency. This article will provide a systematic overview of the state-of-the-art design of the NoMA transmission based on a unified transceiver design framework, the related standardization progress, and some promising use cases in future cellular networks, based on which the interested researchers can get a quick start in this area.
Compressive sensing has shown significant promise in biomedical fields. It reconstructs a signal from sub-Nyquist random linear measurements. Classical methods only exploit the sparsity in one domain. A lot of biomedical signals have additional struc tures, such as multi-sparsity in different domains, piecewise smoothness, low rank, etc. We propose a framework to exploit all the available structure information. A new convex programming problem is generated with multiple convex structure-inducing constraints and the linear measurement fitting constraint. With additional a priori information for solving the underdetermined system, the signal recovery performance can be improved. In numerical experiments, we compare the proposed method with classical methods. Both simulated data and real-life biomedical data are used. Results show that the newly proposed method achieves better reconstruction accuracy performance in term of both L1 and L2 errors.
In most compressive sensing problems l1 norm is used during the signal reconstruction process. In this article the use of entropy functional is proposed to approximate the l1 norm. A modified version of the entropy functional is continuous, different iable and convex. Therefore, it is possible to construct globally convergent iterative algorithms using Bregmans row action D-projection method for compressive sensing applications. Simulation examples are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا