ترغب بنشر مسار تعليمي؟ اضغط هنا

Placement Optimization for UAV-Enabled Wireless Networks with Multi-Hop Backhaul

70   0   0.0 ( 0 )
 نشر من قبل Peiming Li
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unmanned aerial vehicles (UAVs) have emerged as a promising solution to provide wireless data access for ground users in various applications (e.g., in emergence situations). This paper considers a UAV-enabled wireless network, in which multiple UAVs are deployed as aerial base stations (BSs) to serve users distributed on the ground. Different from prior works that ignore UAVs backhaul connections, we practically consider that these UAVs are connected to the core network through a ground gateway node via rate-limited multi-hop wireless backhauls. We also consider that the air-to-ground (A2G) access links from UAVs to users and the air-to-air (A2A) backhaul links among UAVs are operated over orthogonal frequency bands. Under this setup, we aim to maximize the common (or minimum) throughput among all the ground users in the downlink of this network subject to the flow conservation constraints at the UAVs, by optimizing the UAVs deployment locations, jointly with the bandwidth and power allocation of both the access and backhaul links. However, the common throughput maximization is a non-convex optimization problem that is difficult to be solved optimally. To tackle this issue, we use the techniques of alternating optimization and successive convex programming (SCP) to obtain a locally optimal solution. Numerical results show that the proposed design significantly improves the common throughput among all ground users as compared to other benchmark schemes.



قيم البحث

اقرأ أيضاً

In this letter, we study multiuser communication systems enabled by an unmanned aerial vehicle (UAV) that is equipped with a directional antenna of adjustable beamwidth. We propose a fly-hover-and-communicate protocol where the ground terminals (GTs) are partitioned into disjoint clusters that are sequentially served by the UAV as it hovers above the corresponding cluster centers. We jointly optimize the UAVs flying altitude and antenna beamwidth for throughput optimization in three fundamental multiuser communication models, namely UAV-enabled downlink multicasting (MC), downlink broadcasting (BC), and uplink multiple access (MAC). Our results show that the optimal UAV altitude and antenna beamwidth critically depend on the communication model considered.
129 - Yong Zeng , Xiaoli Xu , 2017
This paper studies an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV is dispatched to disseminate a common file to a number of geographically distributed ground terminals (GTs). Our objective is to design the UAV trajectory to minimize its mission completion time, while ensuring that each GT is able to successfully recover the file with a high probability required. We consider the use of practical random linear network coding (RLNC) for UAV multicasting, so that each GT is able to recover the file as long as it receives a sufficiently large number of coded packets. However, the formulated UAV trajectory optimization problem is non-convex and difficult to be directly solved. To tackle this issue, we first derive an analytical lower bound for the success probability of each GTs file recovery. Based on this result, we then reformulate the problem into a more tractable form, where the UAV trajectory only needs to be designed to meet a set of constraints each on the minimum connection time with a GT, during which their distance is below a designed threshold. We show that the optimal UAV trajectory only needs to constitute connected line segments, thus it can be obtained by determining first the optimal set of waypoints and then UAV speed along the lines connecting the waypoints. We propose practical schemes for the waypoints design based on a novel concept of virtual base station (VBS) placement and by applying convex optimization techniques. Furthermore, for given set of waypoints, we obtain the optimal UAV speed over the resulting path efficiently by solving a linear programming (LP) problem. Numerical results show that the proposed UAV-enabled multicasting with optimized trajectory design achieves significant performance gains as compared to benchmark schemes.
75 - Cheng Zhan , Yong Zeng , 2017
In wireless sensor networks (WSNs), utilizing the unmanned aerial vehicle (UAV) as a mobile data collector for the ground sensor nodes (SNs) is an energy-efficient technique to prolong the network lifetime. Specifically, since the UAV can sequentiall y move close to each of the SNs when collecting data from them and thus reduce the link distance for saving the SNs transmission energy. In this letter, considering a general fading channel model for the SN-UAV links, we jointly optimize the SNs wake-up schedule and UAVs trajectory to minimize the maximum energy consumption of all SNs, while ensuring that the required amount of data is collected reliably from each SN. We formulate our design as a mixed-integer non-convex optimization problem. By applying the successive convex optimization technique, an efficient iterative algorithm is proposed to find a sub-optimal solution. Numerical results show that the proposed scheme achieves significant network energy saving as compared to benchmark schemes.
In this paper, the problem of unmanned aerial vehicle (UAV) deployment, power allocation, and bandwidth allocation is investigated for a UAV-assisted wireless system operating at terahertz (THz) frequencies. In the studied model, one UAV can service ground users using the THz frequency band. However, the highly uncertain THz channel will introduce new challenges to the UAV location, user power, and bandwidth allocation optimization problems. Therefore, it is necessary to design a novel framework to deploy UAVs in the THz wireless systems. This problem is formally posed as an optimization problem whose goal is to minimize the total delays of the uplink and downlink transmissions between the UAV and the ground users by jointly optimizing the deployment of the UAV, the transmit power and the bandwidth of each user. The communication delay is crucial for emergency communications. To tackle this nonconvex delay minimization problem, an alternating algorithm is proposed while iteratively solving three subproblems: location optimization subproblem, power control subproblem, and bandwidth allocation subproblem. Simulation results show that the proposed algorithm can reduce the transmission delay by up to $59.3%$, $49.8%$ and $75.5%$ respectively compared to baseline algorithms that optimize only UAV location, bandwidth allocation or transmit power control.
In this paper, we study a cellular-enabled unmanned aerial vehicle (UAV) communication system consisting of one UAV and multiple ground base stations (GBSs). The UAV has a mission of flying from an initial location to a final location, during which i t needs to maintain reliable wireless connection with the cellular network by associating with one of the GBSs at each time instant. We aim to minimize the UAV mission completion time by optimizing its trajectory, subject to a quality of connectivity constraint of the GBS-UAV link specified by a minimum received signal-to-noise ratio (SNR) target, which needs to be satisfied throughout the mission. This problem is non-convex and difficult to be optimally solved. We first propose an effective approach to check its feasibility based on graph connectivity verification. Then, by examining the GBS-UAV association sequence during the UAV mission, we obtain useful insights on the optimal UAV trajectory, based on which an efficient algorithm is proposed to find an approximate solution to the trajectory optimization problem by leveraging techniques in convex optimization and graph theory. Numerical results show that our proposed trajectory design achieves near-optimal performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا