ﻻ يوجد ملخص باللغة العربية
Galactic black-hole X-ray binaries emit a compact, optically thick, mildy relativistic radio jet when they are in the hard and hard-intermediate states. In a series of papers, we have developed a jet model and have shown, through Monte Carlo simulations, that our model can explain many observational results. In this work, we investigate one more constraining relationship between the cutoff energy and the phase lag during the early stages of an X-ray outburst of the black-hole X-ray binary GX 339-4: the cutoff energy decreases while the phase lag increases during the brightening of the hard state. We demonstrate that our jet model naturally explains the above correlation, with a minor modification consisting of introducing an acceleration zone at the base of the jet. The observed correlation between the cutoff energy and the phase lag suggests that the lags are produced by the hard component. Here we show that this correlation arises naturally if Comptonization in the jet produces these two quantities.
Some recent observational results impose significant constraints on all the models that have been proposed to explain the Galactic black-hole X-ray sources in the hard state. In particular, it has been found that during the hard state of Cyg X-1 the
We have performed a timing and spectral analysis of a set of black-hole binaries to study the correlation between the photon index and the time lag of the hard photons with respect to the soft ones. We provide further evidence that the timing and spe
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. T
With Rossi X-ray Timing Explorer (RXTE) data, we systematically study the cross-correlation and time lag in all spectral states of black hole X-ray binary (BHXB) XTE J1859+226 in detail during its entire 1999-2000 outburst that lasted for 166 days. A
We examine the X-ray - radio correlation in Galactic black hole sources. We highlight some of the results which extend the flux-flux relations to sources with very high accretion rates. Some of the recent results indicate that the synchrotron process