ترغب بنشر مسار تعليمي؟ اضغط هنا

A jet model for Galactic black-hole X-ray sources: Some constraining correlations

120   0   0.0 ( 0 )
 نشر من قبل Pablo Reig
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. D. Kylafis




اسأل ChatGPT حول البحث

Some recent observational results impose significant constraints on all the models that have been proposed to explain the Galactic black-hole X-ray sources in the hard state. In particular, it has been found that during the hard state of Cyg X-1 the power-law photon number spectral index is correlated with the average time lag between hard and soft X-rays. Furthermore, the peak frequencies of the four Lorentzians that fit the observed power spectra are correlated with both the photon index and the time lag. We performed Monte Carlo simulations of Compton upscattering of soft, accretion-disk photons in the jet and computed the time lag between hard and soft photons and the power-law index of the resulting photon number spectra. We demonstrate that our jet model naturally explains the above correlations, with no additional requirements and no additional parameters.



قيم البحث

اقرأ أيضاً

Galactic black-hole X-ray binaries emit a compact, optically thick, mildy relativistic radio jet when they are in the hard and hard-intermediate states. In a series of papers, we have developed a jet model and have shown, through Monte Carlo simulati ons, that our model can explain many observational results. In this work, we investigate one more constraining relationship between the cutoff energy and the phase lag during the early stages of an X-ray outburst of the black-hole X-ray binary GX 339-4: the cutoff energy decreases while the phase lag increases during the brightening of the hard state. We demonstrate that our jet model naturally explains the above correlation, with a minor modification consisting of introducing an acceleration zone at the base of the jet. The observed correlation between the cutoff energy and the phase lag suggests that the lags are produced by the hard component. Here we show that this correlation arises naturally if Comptonization in the jet produces these two quantities.
We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert-1.2 galaxy MCG-6-30-15. The new kerrdisk model we have designed for simulating line emission from accreti on disk systems allows black hole spin to be a free parameter in the fit, enabling the user to formally constrain the angular momentum of a black hole, among other physical parameters of the system. In an important extension of previous work, we derive constraints on the black hole spin in MCG-6-30-15 using a self-consistent model for X-ray reflection from the surface of the accretion disk while simultaneously accounting for absorption by dusty photoionized material along the line of sight (the warm absorber). Even including these complications, the XMM-Newton/EPIC-pn data require extreme relativistic broadening of the X-ray reflection spectrum; assuming no emission from within the radius of marginal stability, we derive a formal constraint on the dimensionless black hole spin parameter of a > 0.987 at 90% confidence. The principal unmodeled effect that can significantly reduce the inferred black hole spin is powerful emission from within the radius of marginal stability. Although significant theoretical developments are required to fully understand this region, we argue that the need for a rapidly spinning black hole is robust to physically plausible levels of emission from within the radius of marginal stability. In particular, we show that a non-rotating black hole is strongly ruled out.
277 - A. R. Rao 2013
Observations of Galactic black hole sources are traditionally done in the classical X-ray range (2 -- 10 keV) due to sensitivity constraints. Most of the accretion power, however, is radiated above 10 keV and the study of these sources in hard X-rays has the potential to unravel the radiation mechanisms operating at the inner region of the accretion disk, which is believed to be the seat of a myriad of fascinating features like jet emission, high frequency QPO emission etc. I will briefly summarise the long term hard X-ray observational features like spectral state identification, state transitions and hints of polarised emission, and describe the new insights that would be provided by the forthcoming Astrosat satellite, particularly emphasising the contributions expected from the CZT-Imager payload.
106 - A. R. Rao 2006
We examine the X-ray - radio correlation in Galactic black hole sources. We highlight some of the results which extend the flux-flux relations to sources with very high accretion rates. Some of the recent results indicate that the synchrotron process is unlikely to be the mechanism responsible for the X-ray emission, particularly at high accretion rates. We present a truncated accretion disk scenario and argue that accretion rate and accretion disk geometry ultimately act as a driver of the X-ray - radio correlation. We stress the importance of wide-band X-ray spectral measurements to understand the disk-jet connection and briefly outline some attempts made in the Indian context to build instruments for wide-band X-ray spectroscopy.
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. T he intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects which have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. Applying this relation, the BH mass of RE J1034+396 is found to be $4^{+3}_{-2} times 10^6$ $M_{odot}$. The high end of the mass range follows the relationship between the 2$f_0$ frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant $C= 2.37 M_odot$ Hz$^{-1}$ from 21 reverberation-mapped AGN. As suggested by Gierlinski et al., $M_{rm BH}=C/C_{rm M}$, where $C_{rm M}$ is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ULXs and AGN, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the Ultra-Luminous X-ray source M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا