ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of the cross-correlation and time lag in black hole X-ray binary XTE J1859+226

70   0   0.0 ( 0 )
 نشر من قبل Songpeng Pei
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With Rossi X-ray Timing Explorer (RXTE) data, we systematically study the cross-correlation and time lag in all spectral states of black hole X-ray binary (BHXB) XTE J1859+226 in detail during its entire 1999-2000 outburst that lasted for 166 days. Anti-correlations and positive correlations and their respective soft and hard X-ray lags are only detected in the first 100 days of the outburst when the luminosity is high. This suggests that the cross-correlations may be related to high luminosity. Positive correlations are detected in every state of XTE J1859+226, viz., hard state, hard-intermediate state (HIMS), soft-intermediate state (SIMS) and soft state. However, anti-correlations are only detected in HIMS and SIMS, anti-correlated hard lags are only detected in SIMS, while anti-correlated soft lags are detected in both HIMS and SIMS. Moreover, the ratio of the observations with anti-correlated soft lags to hard lags detected in XTE J1859+226 is significantly different from that in neutron star low-mass X-ray binaries (NS LMXBs). So far, anti-correlations are never detected in the soft state of BHXBs but detected in every branch or state of NS LMXBs. This may be due to the origin of soft seed photons in BHXBs is confined to the accretion disk and, for NS LMXBs, from both accretion disk and the surface of the NS. We notice that the timescale of anti-correlated time lags detected in XTE J1859+226 is similar with that of other BHXBs and NS LMXBs. We suggest that anti-correlated soft lag detected in BHXB may result from fluctuation in the accretion disk as well as NS LMXB.

قيم البحث

اقرأ أيضاً

We present optical photometry and spectroscopy of the X-ray transient XTE J1859+226, obtained during outburst and its subsequent decay to quiescence. Both the X-ray and optical properties are very similar to those of well-studied black hole soft X-ra y transients. We have detected 3 minioutbursts, when XTE J1859+226 was approaching quiescence, as has been previously detected in the Soft X-Ray Transients GRO J0422+32 and GRS 1009-45. By 24 Aug 2000 the system had reached quiescence with R=22.48+/-0.07. The estimated distance to the source is ~11 kpc. Photometry taken during quiescence shows a sinusoidal modulation with a peak to peak amplitude of about 0.4 mag. A period analysis suggests that periods from 0.28 to 0.47 days are equally possible at the 68% confidence level. The amplitude of the quiescent light curve and the relatively low ratio of X-ray to optical flux, indicates that the binary inclination should be high. The measured colours during the outburst allows us to obtain the basic properties of the disc, which agrees well with irradiated disc model predictions.
348 - Pablo Reig 2017
We have performed a timing and spectral analysis of a set of black-hole binaries to study the correlation between the photon index and the time lag of the hard photons with respect to the soft ones. We provide further evidence that the timing and spe ctral properties in black-hole X-ray binaries are coupled. In particular, we find that the average time lag increases as the X-ray emission becomes softer. Although a correlation between the hardness of the X-ray spectrum and the time (or phase) lag has been reported in the past for a handful of systems, our study confirms that this correlated behaviour is a global property of black-hole X-ray binaries. We also demonstrate that the photon-index - time-lag correlation can be explained as a result of inverse Comptonization in a jet.
We report here on multiwavelength observations of the two new soft X-ray transients (SXTs) XTE J1859+226 and XTE J1118+480, which we observed with HST/RXTE/UKIRT. For XTE J1118+480 we also used EUVE since it is located at a very high galactic latitud e and suffers from very low extinction. The two sources exhibited very different behaviour. XTE J1859+226 seems quite normal and therefore a good object for testing the accretion mechanisms in place during the outbursts, XTE J1118+480 is much more unusual because it exhibits i) a low X-ray to optical ratio and ii) a strong non-thermal contribution in the radio to optical domain, which is likely to be due to synchrotron emission. We concentrate here on the near-infrared (NIR) and optical observations of these two systems.
Galactic black-hole X-ray binaries emit a compact, optically thick, mildy relativistic radio jet when they are in the hard and hard-intermediate states. In a series of papers, we have developed a jet model and have shown, through Monte Carlo simulati ons, that our model can explain many observational results. In this work, we investigate one more constraining relationship between the cutoff energy and the phase lag during the early stages of an X-ray outburst of the black-hole X-ray binary GX 339-4: the cutoff energy decreases while the phase lag increases during the brightening of the hard state. We demonstrate that our jet model naturally explains the above correlation, with a minor modification consisting of introducing an acceleration zone at the base of the jet. The observed correlation between the cutoff energy and the phase lag suggests that the lags are produced by the hard component. Here we show that this correlation arises naturally if Comptonization in the jet produces these two quantities.
We explore the accretion properties of the black hole X-ray binary j1550 during its outbursts in 1998/99 and 2000. We model the disk, corona, and reflection components of X-ray spectra taken with the {it Rossi X-ray Timing Explorer} (rxte), using the {tt relxill} suite of reflection models. The key result of our modeling is that the reflection spectrum in the very soft state is best explained by disk self-irradiation, i.e., photons from the inner disk are bent by the strong gravity of the black hole, and reflected off the disk surface. This is the first known detection of thermal disk radiation reflecting off the inner disk. There is also an apparent absorption line at $sim6.9$ keV which may be evidence of an ionized disk wind. The coronal electron temperature ($kT_{rm e}$) is, as expected, lower in the brighter outburst of 1998/99, explained qualitatively by more efficient coronal cooling due to irradiating disk photons. The disk inner radius is consistent with being within a few times the innermost stable circular orbit (ISCO) throughout the bright-hard-to-soft states (10s of $r_{rm g}$ in gravitational units). The disk inclination is low during the hard state, disagreeing with the binary inclination value, and very close to $90^{circ}$ in the soft state, recovering to a lower value when adopting a blackbody spectrum as the irradiating continuum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا