ﻻ يوجد ملخص باللغة العربية
Designing experiments for generalized linear models is difficult because optimal designs depend on unknown parameters. Here we investigate local optimality. We propose to study for a given design its region of optimality in parameter space. Often these regions are semi-algebraic and feature interesting symmetries. We demonstrate this with the Rasch Poisson counts model. For any given interaction order between the explanatory variables we give a characterization of the regions of optimality of a special saturated design. This extends known results from the case of no interaction. We also give an algebraic and geometric perspective on optimality of experimental designs for the Rasch Poisson counts model using polyhedral and spectrahedral geometry.
Designing experiments for generalized linear models is difficult because optimal designs depend on unknown parameters. The local optimality approach is to study the regions in parameter space where a given design is optimal. In many situations these
Optimal design theory for nonlinear regression studies local optimality on a given design space. We identify designs for the Bradley--Terry paired comparison model with small undirected graphs and prove that every saturated D-optimal design is repres
We present a machine learning model for the analysis of randomly generated discrete signals, which we model as the points of a homogeneous or inhomogeneous, compound Poisson point process. Like the wavelet scattering transform introduced by S. Mallat
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an $n$-sample in a space $M$ can be considered as an e
The effectiveness of Bayesian Additive Regression Trees (BART) has been demonstrated in a variety of contexts including non parametric regression and classification. Here we introduce a BART scheme for estimating the intensity of inhomogeneous Poisso