ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic geometry of Poisson regression

153   0   0.0 ( 0 )
 نشر من قبل Thomas Kahle
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing experiments for generalized linear models is difficult because optimal designs depend on unknown parameters. Here we investigate local optimality. We propose to study for a given design its region of optimality in parameter space. Often these regions are semi-algebraic and feature interesting symmetries. We demonstrate this with the Rasch Poisson counts model. For any given interaction order between the explanatory variables we give a characterization of the regions of optimality of a special saturated design. This extends known results from the case of no interaction. We also give an algebraic and geometric perspective on optimality of experimental designs for the Rasch Poisson counts model using polyhedral and spectrahedral geometry.



قيم البحث

اقرأ أيضاً

61 - Thomas Kahle 2016
Designing experiments for generalized linear models is difficult because optimal designs depend on unknown parameters. The local optimality approach is to study the regions in parameter space where a given design is optimal. In many situations these regions are semi-algebraic. We investigate regions of optimality using computer tools such as yalmip, qepcad, and Mathematica.
Optimal design theory for nonlinear regression studies local optimality on a given design space. We identify designs for the Bradley--Terry paired comparison model with small undirected graphs and prove that every saturated D-optimal design is repres ented by a path. We discuss the case of four alternatives in detail and derive explicit polynomial inequality descriptions for optimality regions in parameter space. Using these regions, for each point in parameter space we can prescribe a D-optimal design.
We present a machine learning model for the analysis of randomly generated discrete signals, which we model as the points of a homogeneous or inhomogeneous, compound Poisson point process. Like the wavelet scattering transform introduced by S. Mallat , our construction is a mathematical model of convolutional neural networks and is naturally invariant to translations and reflections. Our model replaces wavelets with Gabor-type measurements and therefore decouples the roles of scale and frequency. We show that, with suitably chosen nonlinearities, our measurements distinguish Poisson point processes from common self-similar processes, and separate different types of Poisson point processes based on the first and second moments of the arrival intensity $lambda(t)$, as well as the absolute moments of the charges associated to each point.
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an $n$-sample in a space $M$ can be considered as an e lement of the quotient space of $M^n$ modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when $M$ is a manifold or path-metric space, respectively. These results are non-trivial even when $M$ is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on $M$. We exhibit Frechet means and $k$-means as metric projections onto 1-skeleta or $k$-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
The effectiveness of Bayesian Additive Regression Trees (BART) has been demonstrated in a variety of contexts including non parametric regression and classification. Here we introduce a BART scheme for estimating the intensity of inhomogeneous Poisso n Processes. Poisson intensity estimation is a vital task in various applications including medical imaging, astrophysics and network traffic analysis. Our approach enables full posterior inference of the intensity in a nonparametric regression setting. We demonstrate the performance of our scheme through simulation studies on synthetic and real datasets in one and two dimensions, and compare our approach to alternative approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا