ﻻ يوجد ملخص باللغة العربية
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an $n$-sample in a space $M$ can be considered as an element of the quotient space of $M^n$ modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when $M$ is a manifold or path-metric space, respectively. These results are non-trivial even when $M$ is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on $M$. We exhibit Frechet means and $k$-means as metric projections onto 1-skeleta or $k$-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
Designing experiments for generalized linear models is difficult because optimal designs depend on unknown parameters. Here we investigate local optimality. We propose to study for a given design its region of optimality in parameter space. Often the
Gaussian double Markovian models consist of covariance matrices constrained by a pair of graphs specifying zeros simultaneously in the covariance matrix and its inverse. We study the semi-algebraic geometry of these models, in particular their dimens
Matching methods are widely used for causal inference in observational studies. Among them, nearest neighbor matching is arguably the most popular. However, nearest neighbor matching does not generally yield an average treatment effect estimator that
Within the class of reflexive Banach spaces, we prove a metric characterization of the class of asymptotic-$c_0$ spaces in terms of a bi-Lipschitz invariant which involves metrics that generalize the Hamming metric on $k$-subsets of $mathbb{N}$. We a
A scoring rule is a loss function measuring the quality of a quoted probability distribution $Q$ for a random variable $X$, in the light of the realized outcome $x$ of $X$; it is proper if the expected score, under any distribution $P$ for $X$, is mi