ﻻ يوجد ملخص باللغة العربية
We present a machine learning model for the analysis of randomly generated discrete signals, which we model as the points of a homogeneous or inhomogeneous, compound Poisson point process. Like the wavelet scattering transform introduced by S. Mallat, our construction is a mathematical model of convolutional neural networks and is naturally invariant to translations and reflections. Our model replaces wavelets with Gabor-type measurements and therefore decouples the roles of scale and frequency. We show that, with suitably chosen nonlinearities, our measurements distinguish Poisson point processes from common self-similar processes, and separate different types of Poisson point processes based on the first and second moments of the arrival intensity $lambda(t)$, as well as the absolute moments of the charges associated to each point.
The effectiveness of Bayesian Additive Regression Trees (BART) has been demonstrated in a variety of contexts including non parametric regression and classification. Here we introduce a BART scheme for estimating the intensity of inhomogeneous Poisso
For the particles undergoing the anomalous diffusion with different waiting time distributions for different internal states, we derive the Fokker-Planck and Feymann-Kac equations, respectively, describing positions of the particles and functional di
We are interested in estimating the location of what we call smooth change-point from $n$ independent observations of an inhomogeneous Poisson process. The smooth change-point is a transition of the intensity function of the process from one level to
Random divisions of an interval arise in various context, including statistics, physics, and geometric analysis. For testing the uniformity of a random partition of the unit interval $[0,1]$ into $k$ disjoint subintervals of size $(S_k[1],ldots,S_k[k
We consider the batch (off-line) policy learning problem in the infinite horizon Markov Decision Process. Motivated by mobile health applications, we focus on learning a policy that maximizes the long-term average reward. We propose a doubly robust e