ترغب بنشر مسار تعليمي؟ اضغط هنا

All-frequency reflectionlessness

62   0   0.0 ( 0 )
 نشر من قبل Thomas Philbin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T.G. Philbin




اسأل ChatGPT حول البحث

We derive planar permittivity profiles that do not reflect perpendicularly exiting radiation of any frequency. The materials obey the Kramers-Kronig relations and have no regions of gain. Reduction of the Casimir force by means of such materials is also discussed.



قيم البحث

اقرأ أيضاً

Rapid and large scanning of a dissipative Kerr-microresonator soliton comb with the characterization of all comb modes along with the separation of the comb modes is imperative for the emerging applications of the frequency-scanned soliton combs. How ever, the scan speed is limited by the gain of feedback systems and the measurement of the frequency shift of all comb modes has not been demonstrated. To overcome the limitation of the feedback, we incorporate the feedback with the feedforward. With the additional gain of > 40 dB by a feedforward signal, a dissipative Kerr-microresonator soliton comb is scanned by 70 GHz in 500 $mu$s, 50 GHz in 125 $mu$s, and 25 GHz in 50 $mu$s (= 500 THz/s). Furthermore, we propose and demonstrate a method to measure the frequency shift of all comb modes, in which an imbalanced Mach-Zehnder interferometer with two outputs with different wavelengths is used. Because of the two degrees of freedom of optical frequency combs, the measurement at the two different wavelengths enables the estimation of the frequency shift of all comb modes.
The polarization of light is utilized in many technologies throughout science and engineering. The ability to transform one state of polarization to another is a key enabling technology. Common polarization transformers are simple polarizers and pola rization rotators. Simple polarizers change the intensity depending on the input state and can only output a fixed polarized state, while polarization rotators rotates the input Stokes vector in the 3D Stokes space. We demonstrate an all-optical input-agnostic polarization transformer (AI-APT), which transforms all input states of polarization to a particular state that can be polarized or partially polarized. The output state of polarization and intensity depends solely on setup parameters, and not on the input state, thereby the AI-APT functions differently from simple polarizers and polarization rotators. The AI-APT is completely passive, and thus can be used as a polarization controller or stabilizer for single photons and ultrafast pulses. The AI-APT may open a new frontier of partially polarized ultrafast optics.
Thin-film lithium niobate (TFLN) is superior for integrated nanophotonics due to its outstanding properties in nearly all aspects: strong second-order nonlinearity, fast and efficient electro-optic effects, wide transparency window, and little two ph oton absorption and free carrier scattering. Together, they permit highly integrated nanophotonic circuits capable of complex photonic processing by incorporating disparate elements on the same chip. Yet, there has to be a demonstration that synergizes those superior properties for system advantage. Here we demonstrate such a chip that capitalizes on TFLNs favorable ferroelectricity, high second-order nonlinearity, and strong electro-optic effects. It consists of a monolithic circuit integrating a Z-cut, quasi-phase matched microring with high quality factor and a phase modulator used in active feedback control. By Pound-Drever-Hall locking, it realizes stable frequency doubling at about 50% conversion with only milliwatt pump, marking the highest by far among all nanophotonic platforms with milliwatt pumping. Our demonstration addresses a long-outstanding challenge facing cavity-based optical processing, including frequency conversion, frequency comb generation, and all-optical switching, whose stable performance is hindered by photorefractive or thermal effects. Our results further establish TFLN as an excellent material capable of optical multitasking, as desirable to build multi-functional chip devices.
We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.
Robust control and stabilization of optical frequency combs enables an extraordinary range of scientific and technological applications, including frequency metrology at extreme levels of precision, novel spectroscopy of quantum gases and of molecule s from visible wavelengths to the far infrared, searches for exoplanets, and photonic waveform synthesis. Here we report on the stabilization of a microresonator-based optical comb (microcomb) by way of mechanical actuation. This represents an important step in the development of microcomb technology, which offers a pathway toward fully-integrated comb systems. Residual fluctuations of our 32.6 GHz microcomb line spacing reach a record stability level of $5times10^{-15}$ for 1 s averaging, thereby highlighting the potential of microcombs to support modern optical frequency standards. Furthermore, measurements of the line spacing with respect to an independent frequency reference reveal the effective stabilization of different spectral slices of the comb with a $<$0.5 mHz variation among 140 comb lines spanning 4.5 THz. These experiments were performed with newly-developed microrod resonators, which were fabricated using a CO$_2$-laser-machining technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا