ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

173   0   0.0 ( 0 )
 نشر من قبل Danny O'Shea
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.

قيم البحث

اقرأ أيضاً

109 - J. T. Rubin , L. Deych 2011
In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular , all components of the force are found to be non-conservative, and cannot, therefore, be derived from a potential energy. We also suggest a simple generalization of the standard formulas for the optical force on the dipole, which reproduces the results of calculations based on the Maxwell stress tensor.
91 - D. OShea , C. Junge , S. Nickel 2011
Highly prolate-shaped whispering-gallery-mode bottle microresonators have recently attracted considerable attention due to their advantageous properties. We experimentally show that such resonators offer ultra-high quality factors, microscopic mode v olumes, and near lossless in- and out-coupling of light using ultra-thin optical fibers. Additionally, bottle microresonators have a simple and customizable mode structure. This enables full tunability using mechanical strain and simultaneous coupling of two ultra-thin coupling fibers in an add-drop configuration. We present two applications based on these characteristics: In a cavity quantum electrodynamics experiment, we actively stabilize the frequency of the bottle microresonator to an atomic transition and operate it in an ultra-high vacuum environment in order to couple single laser-cooled atoms to the resonator mode. In a second experiment, we show that the bottle microresonator can be used as a low-loss, narrow-band add-drop filter. Using the Kerr effect of the silica resonator material, we furthermore demonstrate that this device can be used for single-wavelength all-optical signal processing.
An add-drop filter (ADF) fabricated using a whispering gallery mode resonator has different crosstalks for add and drop functions due to non-zero intrinsic losses of the resonator. Here, we show that introducing gain medium in the resonator and optic ally pumping it below the lasing threshold not only allows loss compensation to achieve similar and lower crosstalks but also tunability in bandwidth and add-drop efficiency. For an active ADF fabricated using an erbium-ytterbium co-doped microsphere, we achieved 24-fold enhancement in the intrinsic quality factor, 3.5-fold increase in drop efficiency, bandwidth tunability of 35 MHz and a crosstalk of only 2%.
We demonstrate a thermal infrared (IR) detector based on an ultra-high-quality-factor (Q) whispering-gallery-mode (WGM) microtoroidal silica resonator, and investigate its performance to detect IR radiation at 10 micron wavelength. The bandwidth and the sensitivity of the detector are dependent on the power of a probe laser and the detuning between the probe laser and the resonance frequency of the resonator. The microtoroid IR sensor achieved a noise-equivalent-power (NEP) of 7.46 nW, corresponding to IR intensity of 0.095 mW/cm^2
We demonstrate that yttrium iron garnet microspheres support optical whispering gallery modes similar to those in non-magnetic dielectric materials. The direction of the ferromagnetic moment tunes both the resonant frequency via the Voigt effect as w ell as the degree of polarization rotation via the Faraday effect. An understanding of the magneto-optical coupling in whispering gallery modes, where the propagation direction rotates with respect to the magnetization, is fundamental to the emerging field of cavity optomagnonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا