ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency-scanned microresonator soliton comb with the tracking of the frequency of all comb modes

106   0   0.0 ( 0 )
 نشر من قبل Naoya Kuse
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rapid and large scanning of a dissipative Kerr-microresonator soliton comb with the characterization of all comb modes along with the separation of the comb modes is imperative for the emerging applications of the frequency-scanned soliton combs. However, the scan speed is limited by the gain of feedback systems and the measurement of the frequency shift of all comb modes has not been demonstrated. To overcome the limitation of the feedback, we incorporate the feedback with the feedforward. With the additional gain of > 40 dB by a feedforward signal, a dissipative Kerr-microresonator soliton comb is scanned by 70 GHz in 500 $mu$s, 50 GHz in 125 $mu$s, and 25 GHz in 50 $mu$s (= 500 THz/s). Furthermore, we propose and demonstrate a method to measure the frequency shift of all comb modes, in which an imbalanced Mach-Zehnder interferometer with two outputs with different wavelengths is used. Because of the two degrees of freedom of optical frequency combs, the measurement at the two different wavelengths enables the estimation of the frequency shift of all comb modes.



قيم البحث

اقرأ أيضاً

Fast-responding detector arrays are commonly used for imaging rapidly-changing scenes. Besides array detectors, a single-pixel detector combined with a broadband optical spectrum can also be used for rapid imaging by mapping the spectrum into a spati al coordinate grid and then rapidly measuring the spectrum. Here, optical frequency combs generated from high-$Q$ silica microresonators are used to implement this method. The microcomb is dispersed in two spatial dimensions to measure a test target. The target-encoded spectrum is then measured by multi-heterodyne beating with another microcomb having a slightly different repetition rate, enabling an imaging frame rate up to 200 kHz and fillrates as high as 48 MegaPixels/s. The system is used to monitor the flow of microparticles in a fluid cell. Microcombs in combination with a monolithic waveguide grating array imager could greatly magnify these results by combining the spatial parallelism of detector arrays with spectral parallelism of optics.
Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric optics in microresonators. We refer to these as microcombs, and here we report a silicon-chip-based microcomb optical clock that phase-coherently converts an optical-frequency reference to a microwave signal. A low-noise comb spectrum with 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clocks output is the electronically countable 33 GHz microcomb line spacing, which features an absolute stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks.
313 - Scott B. Papp , Pascal DelHaye , 2013
We have investigated parametric seeding of a microresonator frequency comb (microcomb) by way of a pump laser with two electro-optic-modulation sidebands. We show that the pump-sideband spacing is precisely replicated throughout the microcombs optica l spectrum, and we demonstrate a record absolute line-spacing stability for microcombs of $1.6times10^{-13}$ at 1 s. The spectrum of a parametric comb is complex, and often non-equidistant subcombs are observed. Our results demonstrate that parametric seeding can not only control the subcombs, but can lead to the generation of a strictly equidistant microcomb spectrum.
High speed optical telecommunication is enabled by wavelength division multiplexing, whereby hundreds of individually stabilized lasers encode the information within a single mode optical fiber. In the seek for larger bandwidth the optical power sent into the fiber is limited by optical non-linearities within the fiber and energy consumption of the light sources starts to become a significant cost factor. Optical frequency combs have been suggested to remedy this problem by generating multiple laser lines within a monolithic device, their current stability and coherence lets them operate only in small parameter ranges. Here we show that a broadband frequency comb realized through the electro-optic effect within a high quality whispering gallery mode resonator can operate at low microwave and optical powers. Contrary to the usual third order Kerr non-linear optical frequency combs we rely on the second order non-linear effect which is much more efficient. Our result uses a fixed microwave signal which is mixed with an optical pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to operate with microwave powers three order magnitude smaller than in commercially available devices. We can expect the implementation into the next generation long distance telecommunication which relies on coherent emission and detection schemes to allow for operation with higher optical powers and at reduced cost.
We demonstrate control and stabilization of an optical frequency comb generated by four-wave mixing in a monolithic microresonator with a mode spacing in the microwave regime (86 GHz). The comb parameters (mode spacing and offset frequency) are contr olled via the power and the frequency of the pump laser, which constitutes one of the comb modes. Furthermore, generation of a microwave beat note at the combs mode spacing frequency is presented, enabling direct stabilization to a microwave frequency standard.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا