ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-electron Spin Resonance in a Quadruple Quantum Dot

126   0   0.0 ( 0 )
 نشر من قبل Tomohiro Otsuka
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of the electron spin resonance is possible.



قيم البحث

اقرأ أيضاً

Scaling up qubits is a necessary step to realize useful systems of quantum computation. Here we demonstrate coherent manipulations of four individual electron spins using a micro-magnet method in a quadruple quantum dot - the largest number of dots u sed for the single spin control in multiple quantum dots. We observe Rabi oscillations and electron spin resonance (ESR) for each dot and evaluate the spin-electric coupling of the four dots, and finally discuss practical approaches to independently address single spin control in multiple quantum dot systems containing even more quantum dots.
We report the realization of an array of four tunnel coupled quantum dots in the single electron regime, which is the first required step toward a scalable solid state spin qubit architecture. We achieve an efficient tunability of the system but also find out that the conditions to realize spin blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits. We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its complex charge state diagrams and are able to find the most suitable configurations for future Pauli spin blockade measurements. We then experimentally realize the corresponding charge states with a good agreement to our model.
Electron states in a inhomogeneous Ge/Si quantum dot array with groups of closely spaced quantum dots were studied by conventional continuous wave ($cw$) ESR and spin-echo methods. We find that the existence of quantum dot groups allows to increase t he spin relaxation time in the system. Created structures allow us to change an effective localization radius of electrons by external magnetic field. With the localization radius close to the size of a quantum dot group, we obtain fourfold increasing spin relaxation time $T_1$, as compared to conventional homogeneous quantum dot arrays. This effect is attributed to averaging of local magnetic fields related to nuclear spins $^{29}$Si and stabilization of $S_z$-polarization during electron back-and-forth motion within a quantum dot group.
Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressabl e manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.
The ability to manipulate electron spins with voltage-dependent electric fields is key to the operation of quantum spintronics devices, such as spin-based semiconductor qubits. A natural approach to electrical spin control exploits the spin-orbit cou pling (SOC) inherently present in all materials. So far, this approach could not be applied to electrons in silicon, due to their extremely weak SOC. Here we report an experimental realization of electrically driven electron-spin resonance in a silicon-on-insulator (SOI) nanowire quantum dot device. The underlying driving mechanism results from an interplay between SOC and the multi-valley structure of the silicon conduction band, which is enhanced in the investigated nanowire geometry. We present a simple model capturing the essential physics and use tight-binding simulations for a more quantitative analysis. We discuss the relevance of our findings to the development of compact and scalable electron-spin qubits in silicon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا