ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot

81   0   0.0 ( 0 )
 نشر من قبل Akito Noiri
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.



قيم البحث

اقرأ أيضاً

132 - L. Gaudreau , G. Granger , A. Kam 2011
Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications. It has been suggested that triple quantum dots may provid e additional tools and functionalities. These include the encoding of information to either obtain protection from decoherence or to permit all-electrical operation, efficient spin busing across a quantum circuit, and to enable quantum error correction utilizing the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate for the first time coherent manipulation between two interacting three-spin states. We employ the Landau-Zener-Stuckelberg approach for creating and manipulating coherent superpositions of quantum states. We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures but has not been previously demonstrated.
A fundamental goal in the manipulation of quantum systems is the achievement of many coherent oscillations within the characteristic dephasing time T2*[1]. Most manipulations of electron spins in quantum dots have focused on the construction and cont rol of two-state quantum systems, or qubits, in which each quantum dot is occupied by a single electron[2-7]. Here we perform quantum manipulations on a system with more electrons per quantum dot, in a double dot with three electrons. We demonstrate that tailored pulse sequences can be used to induce coherent rotations between 3-electron quantum states. Certain pulse sequences yield coherent oscillations with a very high figure of merit (the ratio of coherence time to rotation time) of >100. The presence of the third electron enables very fast rotations to all possible states, in contrast to the case when only two electrons are used, in which some rotations are slow. The minimum oscillation frequency we observe is >5 GHz.
251 - S. Spatzek 2010
Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins withi n an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with microeV-strength.
Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglemen t operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of the electron spin resonance is possible.
We report measurements of multi-path transport through a triple quantum dot (TQD) in the few-electron regime using a GaAs three-terminal device with a separate lead attached to each dot. When two paths reside inside the transport window and are simul taneously spin-blockaded, the leak currents through both paths are significantly enhanced. We suggest that the transport processes in the two paths cooperate to lift the spin blockade. Fine structures in transport spectra indicate that different kinds of cooperative mechanisms are involved, depending on the details of the three-electron spin states governed by the size of exchange splitting relative to nuclear spin fluctuations. Our results indicate that a variety of correlation phenomena can be explored in three-terminal TQDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا