ترغب بنشر مسار تعليمي؟ اضغط هنا

Four single-spin Rabi oscillations in a quadruple quantum dot

90   0   0.0 ( 0 )
 نشر من قبل Takumi Ito
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scaling up qubits is a necessary step to realize useful systems of quantum computation. Here we demonstrate coherent manipulations of four individual electron spins using a micro-magnet method in a quadruple quantum dot - the largest number of dots used for the single spin control in multiple quantum dots. We observe Rabi oscillations and electron spin resonance (ESR) for each dot and evaluate the spin-electric coupling of the four dots, and finally discuss practical approaches to independently address single spin control in multiple quantum dot systems containing even more quantum dots.

قيم البحث

اقرأ أيضاً

Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglemen t operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of the electron spin resonance is possible.
We report on coherent resonant emission of the fundamental exciton state in a single semiconductor GaAs quantum dot. Resonant regime with picoseconde laser excitation is realized by embedding the quantum dots in a waveguiding structure. As the pulse intensity is increased, Rabi oscillation is observed up to three periods. The Rabi regime is achieved owing to an enhanced light-matter coupling in the waveguide. This is due to a emph{slow light effect} ($c/v_{g}simeq 3000$), occuring when an intense resonant pulse propagates in a medium. The resonant control of the quantum dot fundamental transition opens new possibilities in quantum state manipulation and quantum optics experiments in condensed matter physics.
Interaction of traveling wave of classic light with 1D-chain of coupled quantum dots (QDs) in strong coupling regime has been theoretically considered. The effect of space propagation of Rabi oscillations in the form of traveling waves and wave packe ts has been predicted. Physical interpretation of the effect has been given, principles of its experimental observation are discussed.
We report on hole g-factor measurements in three terminal SiGe self-assembled quantum dot devices with a top gate electrode positioned very close to the nanostructure. Measurements of both the perpendicular as well as the parallel g-factor reveal sig nificant changes for a small modulation of the top gate voltage. From the observed modulations we estimate that, for realistic experimental conditions, hole spins can be electrically manipulated with Rabi frequencies in the order of 100MHz. This work emphasises the potential of hole-based nano-devices for efficient spin manipulation by means of the g-tensor modulation technique.
We report the realization of an array of four tunnel coupled quantum dots in the single electron regime, which is the first required step toward a scalable solid state spin qubit architecture. We achieve an efficient tunability of the system but also find out that the conditions to realize spin blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits. We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its complex charge state diagrams and are able to find the most suitable configurations for future Pauli spin blockade measurements. We then experimentally realize the corresponding charge states with a good agreement to our model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا