ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundance distributions over the surfaces of magnetic ApBp stars: theoretical predictions

75   0   0.0 ( 0 )
 نشر من قبل Georges Alecian
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Alecian




اسأل ChatGPT حول البحث

Recently published empirical abundance maps, obtained through (Zeeman) Doppler mapping (ZDM), do not currently agree with the abundance structures predicted by means of numerical models of atomic diffusion in magnetic atmospheres of ApBp stars. In a first step towards the resolution of these discrepancies, we present a state of the art grid of equilibrium abundance stratifications in the atmosphere of a magnetic Ap star with T_eff = 10000 K and log g = 4.0. A description of the behaviour of 16 chemical elements including predictions concerning the over- and/or under-abundances over the stellar surface is followed by a discussion of the possible influence of presently neglected physical processes.

قيم البحث

اقرأ أيضاً

52 - G. Alecian , M.J. Stift 2017
Numerical models for the atmospheres of magnetic ApBp stars have in the past dealt only with centred dipole magnetic field geometries. These models include atomic diffusion that stratifies the abundances of metals according to the local magnetic fiel d strength and the direction with respect to the surface normal. The magnetic variations with rotational phase of most well observed stars however reveal that this assumption is far too simplistic. In this work we establish for the first time a three-dimensional (3D) model with abundance stratifications arising from atomic diffusion of 16 metals, adopting a non-axisymmetric magnetic field geometry inspired by the configuration derived for a real ApBp star. We find that the chemical elements are distributed in complex patterns in all three dimensions, far from the simple rings that have been proposed as the dominant abundance structures from calculations that assume a perfectly centred dipolar magnetic geometry
A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the mo st sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetised stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.
62 - S. Bisterzo 2010
A large sample of carbon enhanced metal-poor stars enriched in s-process elements (CEMP-s) have been observed in the Galactic halo. These stars of low mass (M ~ 0.9 Msun) are located on the main-sequence or the red giant phase, and do not undergo thi rd dredge-up (TDU) episodes. The s-process enhancement is most plausibly due to accretion in a binary system from a more massive companion when on the asymptotic giant branch (AGB) phase (now a white dwarf). In order to interpret the spectroscopic observations, updated AGB models are needed to follow in detail the s-process nucleosynthesis. We present nucleosynthesis calculations based on AGB stellar models obtained with FRANEC (Frascati Raphson-Newton Evolutionary Code) for low initial stellar masses and low metallicities. For a given metallicity, a wide spread in the abundances of the s-process elements is obtained by varying the amount of 13C and its profile in the pocket, where the 13C(a, n)16O reaction is the major neutron source, releasing neutrons in radiative conditions during the interpulse phase. We account also for the second neutron source 22Ne(a, n)25Mg, partially activated during convective thermal pulses. We discuss the surface abundance of elements from carbon to bismuth, for AGB models of initial masses M = 1.3 -- 2 Msun, low metallicities ([Fe/H] from -1 down to -3.6) and for different 13C-pockets efficiencies. In particular we analyse the relative behaviour of the three s-process peaks: light-s (ls at magic neutron number N = 50), heavy-s (hs at N = 82) and lead (N = 126). Two s-process indicators, [hs/ls] and [Pb/hs], are needed in order to characterise the s-process distribution. In the online material, we provide a set of data tables with surface predictions. ...
Almost all chemical elements have been made by nucleosynthetic reactions in various kind of stars and have been accumulated along our cosmic history. Among those elements, the origin of phosphorus is of extreme interest because it is known to be esse ntial for life such as we know on Earth. However, current models of (Galactic) chemical evolution under-predict the phosphorus we observe in our Solar System. Here we report the discovery of 15 phosphorus-rich stars with unusual overabundances of O, Mg, Si, Al, and Ce. Phosphorus-rich stars likely inherit their peculiar chemistry from another nearby stellar source but their intriguing chemical abundance pattern challenge the present stellar nucleosynthesis theoretical predictions. Specific effects such as rotation or advanced nucleosynthesis in convective-reactive regions in massive stars represent the most promising alternatives to explain the existence of phosphorus-rich stars. The phosphorus-rich stars progenitors may significantly contribute to the phosphorus present on Earth today.
A new time series of high-resolution Stokes I and V spectra of the magnetic B2V star HD 184927 has been obtained in the context of the Magnetism in Massive Stars (MiMeS) Large Program with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii T elescope and dimaPol liquid crystal spectropolarimeter at 1.8-m telescope of Dominion Astrophysical Observatory. We model the optical and UV spectrum obtained from the IUE archive to infer the stellar physical parameters. Using magnetic field measurements we derive an improved rotational period of 9.53102+-0.0007d. We infer the longitudinal magnetic field from lines of H, He and various metals, revealing large differences between the apparent field strength variations determined from different elements. Magnetic Doppler Imaging using He and O lines yields strongly nonuniform surface distributions of these elements. We demonstrate that the diversity of longitudinal field variations can be understood as due to the combination of element-specific surface abundance distributions in combination with a surface magnetic field that is comprised of dipolar and quadrupolar components. We have reanalyzed IUE high resolution spectra, confirming strong modulation of wind-sensitive Civ and Siv resonance lines. However, we are unable to detect any modulation of the H$alpha$ profile attributable to a stellar magnetosphere. We conclude that HD 184927 hosts a centrifugal magnetosphere, albeit one that is undetectable at optical wavelengths. The magnetic braking timescale of HD 184927 is computed to be $tau_J = 0.96$ or $5.8$ Myr. These values are consistent with the slow rotation and estimated age of the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا