ترغب بنشر مسار تعليمي؟ اضغط هنا

The surface magnetic field and chemical abundance distributions of the B2V helium-strong star HD184927

321   0   0.0 ( 0 )
 نشر من قبل Ilya Yakunin Dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new time series of high-resolution Stokes I and V spectra of the magnetic B2V star HD 184927 has been obtained in the context of the Magnetism in Massive Stars (MiMeS) Large Program with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope and dimaPol liquid crystal spectropolarimeter at 1.8-m telescope of Dominion Astrophysical Observatory. We model the optical and UV spectrum obtained from the IUE archive to infer the stellar physical parameters. Using magnetic field measurements we derive an improved rotational period of 9.53102+-0.0007d. We infer the longitudinal magnetic field from lines of H, He and various metals, revealing large differences between the apparent field strength variations determined from different elements. Magnetic Doppler Imaging using He and O lines yields strongly nonuniform surface distributions of these elements. We demonstrate that the diversity of longitudinal field variations can be understood as due to the combination of element-specific surface abundance distributions in combination with a surface magnetic field that is comprised of dipolar and quadrupolar components. We have reanalyzed IUE high resolution spectra, confirming strong modulation of wind-sensitive Civ and Siv resonance lines. However, we are unable to detect any modulation of the H$alpha$ profile attributable to a stellar magnetosphere. We conclude that HD 184927 hosts a centrifugal magnetosphere, albeit one that is undetectable at optical wavelengths. The magnetic braking timescale of HD 184927 is computed to be $tau_J = 0.96$ or $5.8$ Myr. These values are consistent with the slow rotation and estimated age of the star.

قيم البحث

اقرأ أيضاً

We report the detection of a strong, reversing magnetic field and variable H-alpha emission in the bright helium-weak star HD 176582 (HR 7185). Spectrum, magnetic and photometric variability of the star are all consistent with a precisely determined period of 1.5819840 +/- 0.0000030 days which we assume to be the rotation period of the star. From the magnetic field curve, and assuming a simple dipolar field geometry, we derive a polar field strength of approximately 7 kG and a lower limit of 52 degrees for the inclination of the rotation axis. However, based on the behaviour of the H-alpha emission we adopt a large inclination angle of 85 degrees and this leads to a large magnetic obliquity of 77 degrees. The H-alpha emission arises from two distinct regions located at the intersections of the magnetic and rotation equators and which corotate with the star at a distance of about 3.5 R* above its surface. We estimate that the emitting regions have radial and meridional sizes on the order of 2 R* and azimuthal extents (perpendicular to the magnetic equator) of less than approximately 0.6 R*. HD 176582 therefore appears to show many of the cool magnetospheric phenomena as that displayed by other magnetic helium-weak and helium-strong stars such as the prototypical helium-strong star sigma Ori E. The observations are consistent with current models of magnetically confined winds and rigidly-rotating magnetospheres for magnetic Bp stars.
97 - Gajendra Pandey 2014
DY Cen has shown a steady fading of its visual light by about 1 magnitude in the last 40 years suggesting a secular increase in its effective temperature. We have conducted non-LTE and LTE abundance analyses to determine the stars effective temperatu re, surface gravity, and chemical composition using high-resolution spectra obtained over two decades. The derived stellar parameters for three epochs suggest that DY Cen has evolved at a constant luminosity and has become hotter by about 5000 K in 23 years. We show that the derived abundances remain unchanged for the three epochs. The derived abundances of the key elements, including F and Ne, are as observed for the extreme helium stars resulting from a merger of an He white dwarf with a C-O white dwarf. Thus, DY Cen by chemical composition appears to be also a product of a merger of two white dwarfs. This appearance seems to be at odds with the recent suggestion that DY Cen is a single-lined spectroscopic binary.
52 - G. Alecian , M.J. Stift 2017
Numerical models for the atmospheres of magnetic ApBp stars have in the past dealt only with centred dipole magnetic field geometries. These models include atomic diffusion that stratifies the abundances of metals according to the local magnetic fiel d strength and the direction with respect to the surface normal. The magnetic variations with rotational phase of most well observed stars however reveal that this assumption is far too simplistic. In this work we establish for the first time a three-dimensional (3D) model with abundance stratifications arising from atomic diffusion of 16 metals, adopting a non-axisymmetric magnetic field geometry inspired by the configuration derived for a real ApBp star. We find that the chemical elements are distributed in complex patterns in all three dimensions, far from the simple rings that have been proposed as the dominant abundance structures from calculations that assume a perfectly centred dipolar magnetic geometry
74 - G. Alecian 2015
Recently published empirical abundance maps, obtained through (Zeeman) Doppler mapping (ZDM), do not currently agree with the abundance structures predicted by means of numerical models of atomic diffusion in magnetic atmospheres of ApBp stars. In a first step towards the resolution of these discrepancies, we present a state of the art grid of equilibrium abundance stratifications in the atmosphere of a magnetic Ap star with T_eff = 10000 K and log g = 4.0. A description of the behaviour of 16 chemical elements including predictions concerning the over- and/or under-abundances over the stellar surface is followed by a discussion of the possible influence of presently neglected physical processes.
U Scorpii is a recurrent nova which has been observed in outburst on 10 occasions, most recently in 2010. We present near-infrared and optical spectroscopy of the 2010 outburst of U Sco. The reddening of U Sco is found to be $E(B-V) = 0.14pm0.12$, co nsistent with previous determinations, from simultaneous optical and near-IR observations. The spectra show the evolution of the line widths and profiles to be consistent with previous outbursts. Velocities are found to be up to 14000,kms$^{-1}$ in broad components and up to 1800,kms$^{-1}$ in narrow line components, which become visible around day 8 due to changes in the optical depth. From the spectra we derive a helium abundance of $N$(He)/$N$(H)$ = 0.073pm0.031$ from the most reliable lines available; this is lower than most other estimates and indicates that the secondary is not helium-rich, as previous studies have suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا