ترغب بنشر مسار تعليمي؟ اضغط هنا

Phosphorus-rich stars with unusual abundances are challenging theoretical predictions

61   0   0.0 ( 0 )
 نشر من قبل Thomas Masseron
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Almost all chemical elements have been made by nucleosynthetic reactions in various kind of stars and have been accumulated along our cosmic history. Among those elements, the origin of phosphorus is of extreme interest because it is known to be essential for life such as we know on Earth. However, current models of (Galactic) chemical evolution under-predict the phosphorus we observe in our Solar System. Here we report the discovery of 15 phosphorus-rich stars with unusual overabundances of O, Mg, Si, Al, and Ce. Phosphorus-rich stars likely inherit their peculiar chemistry from another nearby stellar source but their intriguing chemical abundance pattern challenge the present stellar nucleosynthesis theoretical predictions. Specific effects such as rotation or advanced nucleosynthesis in convective-reactive regions in massive stars represent the most promising alternatives to explain the existence of phosphorus-rich stars. The phosphorus-rich stars progenitors may significantly contribute to the phosphorus present on Earth today.

قيم البحث

اقرأ أيضاً

62 - S. Bisterzo 2010
A large sample of carbon enhanced metal-poor stars enriched in s-process elements (CEMP-s) have been observed in the Galactic halo. These stars of low mass (M ~ 0.9 Msun) are located on the main-sequence or the red giant phase, and do not undergo thi rd dredge-up (TDU) episodes. The s-process enhancement is most plausibly due to accretion in a binary system from a more massive companion when on the asymptotic giant branch (AGB) phase (now a white dwarf). In order to interpret the spectroscopic observations, updated AGB models are needed to follow in detail the s-process nucleosynthesis. We present nucleosynthesis calculations based on AGB stellar models obtained with FRANEC (Frascati Raphson-Newton Evolutionary Code) for low initial stellar masses and low metallicities. For a given metallicity, a wide spread in the abundances of the s-process elements is obtained by varying the amount of 13C and its profile in the pocket, where the 13C(a, n)16O reaction is the major neutron source, releasing neutrons in radiative conditions during the interpulse phase. We account also for the second neutron source 22Ne(a, n)25Mg, partially activated during convective thermal pulses. We discuss the surface abundance of elements from carbon to bismuth, for AGB models of initial masses M = 1.3 -- 2 Msun, low metallicities ([Fe/H] from -1 down to -3.6) and for different 13C-pockets efficiencies. In particular we analyse the relative behaviour of the three s-process peaks: light-s (ls at magic neutron number N = 50), heavy-s (hs at N = 82) and lead (N = 126). Two s-process indicators, [hs/ls] and [Pb/hs], are needed in order to characterise the s-process distribution. In the online material, we provide a set of data tables with surface predictions. ...
113 - Yoichi Takeda 2021
Spectroscopic determinations of Rubidium abundances were conducted by applying the spectrum fitting method to the Rb I 7800 line for an extensive sample of ~500 late-type dwarfs as well as giants (including Hyades cluster stars) belonging to the gala ctic disk population, with an aim of establishing the behaviour of [Rb/Fe] ratio for disk stars in the metallicity range of -0.6<[Fe/H]<+0.3. An inspection of the resulting Rb abundances for Hyades dwarfs revealed that they show a systematic Teff-dependent trend at >5500K; this means that the results for mid-G to F stars (including the Sun) are not reliable (i.e., more or less overestimated), which might be due to some imperfect treatment of surface convection in classical model atmospheres. As such, it was decided to confine only to late-G and K stars at Teff<5500K and adopt the solar-system (meteoritic) value as the reference Rb abundance. The [Rb/Fe] vs.[Fe/H] relations derived for field dwarfs and giants turned out to be consistent with each other, showing a gradual increase of [Rb/Fe] with a decrease in [Fe/H] (with d[Rb/Fe]/d[Fe/H] gradient of ~-0.4 around the solar metallicity), which is favourably compared with the theoretical prediction of chemical evolution models. Accordingly, this study could not confirm the anomalous behaviour of [Rb/Fe] ratio (tending to be subsolar but steeply increasing toward supersolar metallicity) recently reported for M dwarf stars of -0.3<[Fe/H]<+0.3.
136 - Monique Spite 2010
Sulfur is important: the site of its formation is uncertain, and at very low metallicity the trend of [S/Fe] against [Fe/H] is controversial. Below [Fe/H]=-2.0, [S/Fe] remains constant or it decreases with [Fe/H], depending on the author and the mult iplet used in the analysis. Moreover, although sulfur is not significantly bound in dust grains in the ISM, it seems to behave differently in DLAs and in old metal-poor stars. We aim to determine precise S abundance in a sample of extremely metal-poor stars taking into account NLTE and 3D effects. NLTE profiles of the lines of the multiplet 1 of SI have been computed using a new model atom for S. We find sulfur in EMP stars to behave like the other alpha-elements, with [S/Fe] remaining approximately constant for [Fe/H]<-3. However, [S/Mg] seems to decrease slightly as a function of [Mg/H]. The overall abundance patterns of O, Na, Mg, Al, S, and K are best matched by the SN model yields by Heger & Woosley. The [S/Zn] ratio in EMP stars is solar, as found also in DLAs. We obtain an upper limit on the abundance of sulfur, [S/Fe] < +0.5, for the ultra metal-poor star CS 22949-037. This, along with a previous reported measurement of zinc, argues against the conjecture that the light-element abundances pattern in this star, and, by analogy, the hyper metal-poor stars HE 0107-5240 and HE 1327-2326, are due to dust depletion.
Mass-loss rates and terminal wind velocities are key parameters that determine the kinetic wind energy and momenta of massive stars. Furthermore, accurate mass-loss rates determine the mass and rotational velocity evolution of mass stars, and their f ates as neutron stars and black holes in function of metallicity (Z). Here we update our Monte Carlo mass-loss Recipe with new dynamically-consistent computations of the terminal wind velocity -- as a function of Z. These predictions are particularly timely as the HST ULLYSES project will observe ultraviolet spectra with blue-shifted P Cygni lines of hundreds of massive stars in the low-Z Large and Small Magellanic Clouds, as well as sub-SMC metallicity hosts. Around 35 000 K, we uncover a weak-wind dip and we present diagnostics to investigate its physics with ULLYSES and X-Shooter data. We discuss how the dip may provide important information on wind-driving physics, and how this is of key relevance towards finding a new gold-standard for OB star mass-loss rates. For B supergiants below the Fe IV to III bi-stability jump, the terminal velocity is found to be independent of Z and M, while the mass-loss rate still varies as $dot{M} propto Z^{0.85}$. For O-type stars above the bi-stability jump we find a terminal-velocity dependence of $v_{infty} propto Z^{0.19}$ and the Z-dependence of the mass-loss rate is found to be as shallow as $dot{M} propto Z^{0.42}$, implying that to reproduce the `heavy black holes from LIGO/VIRGO, the `low Z requirement becomes even more stringent than was previously anticipated.
The circumstellar ammonia (NH$_3$) chemistry in evolved stars is poorly understood. Previous observations and modelling showed that NH$_3$ abundance in oxygen-rich stars is several orders of magnitude above that predicted by equilibrium chemistry. In this article, we characterise the spatial distribution and excitation of NH$_3$ in the O-rich circumstellar envelopes (CSEs) of four diverse targets: IK Tau, VY CMa, OH 231.8+4.2, and IRC +10420 with multi-wavelength observations. We observed the 1.3-cm inversion line emission with the Very Large Array (VLA) and submillimetre rotational line emission with the Heterodyne Instrument for the Far-Infrared (HIFI) aboard Herschel from all four targets. For IK Tau and VY CMa, we observed the rovibrational absorption lines in the $ u_2$ band near 10.5 $mu$m with the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). We also attempted to search for the rotational transition within the $v_2=1$ state near 2 mm with the IRAM 30m Telescope towards IK Tau. Non-LTE radiative transfer modelling, including radiative pumping to the vibrational state, was carried out to derive the radial distribution of NH$_3$ in these CSEs. Our modelling shows that the NH$_3$ abundance relative to molecular hydrogen is generally of the order of $10^{-7}$, which is a few times lower than previous estimates that were made without considering radiative pumping and is at least 10 times higher than that in the C-rich CSE of IRC +10216. Incidentally, we also derived a new period of IK Tau from its $V$-band light curve. NH$_3$ is again detected in very high abundance in O-rich CSEs. Its emission mainly arises from localised spatial-kinematic structures that are probably denser than the ambient gas. Circumstellar shocks in the accelerated wind may contribute to the production of NH$_3$. (Abridged abstract)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا