ﻻ يوجد ملخص باللغة العربية
Numerical models for the atmospheres of magnetic ApBp stars have in the past dealt only with centred dipole magnetic field geometries. These models include atomic diffusion that stratifies the abundances of metals according to the local magnetic field strength and the direction with respect to the surface normal. The magnetic variations with rotational phase of most well observed stars however reveal that this assumption is far too simplistic. In this work we establish for the first time a three-dimensional (3D) model with abundance stratifications arising from atomic diffusion of 16 metals, adopting a non-axisymmetric magnetic field geometry inspired by the configuration derived for a real ApBp star. We find that the chemical elements are distributed in complex patterns in all three dimensions, far from the simple rings that have been proposed as the dominant abundance structures from calculations that assume a perfectly centred dipolar magnetic geometry
Recently published empirical abundance maps, obtained through (Zeeman) Doppler mapping (ZDM), do not currently agree with the abundance structures predicted by means of numerical models of atomic diffusion in magnetic atmospheres of ApBp stars. In a
(Abridged) Aims: We study the effects related to departures from non-local thermodynamic equilibrium (NLTE) and homogeneity in the atmospheres of red giant stars in Galactic globular cluster NGC 6752, to assess their influence on the formation of Ba
A new time series of high-resolution Stokes I and V spectra of the magnetic B2V star HD 184927 has been obtained in the context of the Magnetism in Massive Stars (MiMeS) Large Program with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii T
In the paper we study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density pattern around the bipolar regions de
An asymptotic expansion is performed to obtain quasi-axisymmetric magnetic configurations that are weakly non-axisymmetric. A large space of solutions is identified, which satisfy the condition of quasi-axisymmetry on a single magnetic flux surface,