ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of microroughness evolution in X-ray astronomical multilayer mirrors by surface topography with the MPES program and by X-ray scattering

67   0   0.0 ( 0 )
 نشر من قبل Daniele Spiga
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Future hard X-ray telescopes (e.g. SIMBOL-X and Constellation-X) will make use of hard X-ray optics with multilayer coatings, with angular resolutions comparable to the achieved ones in the soft X-rays. One of the crucial points in X-ray optics, indeed, is multilayer interfacial microroughness that causes effective area reduction and X-Ray Scattering (XRS). The latter, in particular, is responsible for image quality degradation. Interfacial smoothness deterioration in multilayer deposition processes is commonly observed as a result of substrate profile replication and intrinsic random deposition noise. For this reason, roughness growth should be carefully investigated by surface topographic analysis, X-ray reflectivity and XRS measurements. It is convenient to express the roughness evolution in terms of interface Power Spectral Densities (PSD), that are directly related to XRS and, in turn, in affecting the optic HEW (Half Energy Width). In order to interpret roughness amplification and to help us to predict the imaging performance of hard X-ray optics, we have implemented a well known kinetic continuum equation model in a IDL language program (MPES, Multilayer PSDs Evolution Simulator), allowing us the determination of characteristic growth parameters in multilayer coatings. In this paper we present some results from analysis we performed on several samples coated with hard X-ray multilayers (W/Si, Pt/C, Mo/Si) using different deposition techniques. We show also the XRS predictions resulting from the obtained modelizations, in comparison to the experimental XRS measurements performed at the energy of 8.05 keV.



قيم البحث

اقرأ أيضاً

150 - D. Spiga , B. Salmaso , R. She 2016
The LAMP (Lightweight Asymmetry and Magnetism Probe) X-ray telescope is a mission concept to measure the polarization of X-ray astronomical sources at 250 eV via imaging mirrors that reflect at incidence angles near the polarization angle, i.e., 45 d eg. Hence, it will require the adoption of multilayer coatings with a few nanometers d-spacing in order to enhance the reflectivity. The nickel electroforming technology has already been successfully used to fabricate the high angular resolution imaging mirrors of the X-ray telescopes SAX, XMM-Newton, and Swift/XRT. We are investigating this consolidated technology as a possible technique to manufacture focusing mirrors for LAMP. Although the very good reflectivity performances of this kind of mirrors were already demonstrated in grazing incidence, the reflectivity and the scattering properties have not been tested directly at the unusually large angle of 45 deg. Other possible substrates are represented by thin glass foils or silicon wafers. In this paper we present the results of the X-ray reflectivity campaign performed at the BEAR beamline of Elettra - Sincrotrone Trieste on multilayer coatings of various composition (Cr/C, Co/C), deposited with different sputtering parameters on nickel, silicon, and glass substrates, using polarized X-rays in the spectral range 240 - 290 eV.
Multilayer X-ray mirrors consist of a coating of a large number of alternate layers of high Z and low Z materials with a typical thickness of 10-100 Angstrom, on a suitable substrate. Such coatings play an important role in enhancing the reflectivity of X-ray mirrors by allowing reflections at angles much larger than the critical angle of X-ray reflection for the given materials. Coating with an equal thickness of each bilayer enhances the reflectivity at discrete energies, satisfying Bragg condition. However, by systematically varying the bilayer thickness in the multilayer stack, it is possible to design X-ray mirrors having enhanced reflectivity over a broad energy range. One of the most important applications of such a depth graded multilayer mirror is to realize hard X-ray telescopes for astronomical purposes. Design of such multilayer X-ray mirrors and their characterization with X-ray reflectivity measurements require appropriate software tools. We have initiated the development of hard X-ray optics for future Indian X-ray astronomical missions, and in this context, we have developed a program, DarpanX, to calculate X-ray reflectivity for single and multilayer mirrors. It can be used as a stand-alone tool for designing multilayer mirrors with required characteristics. But more importantly, it has been implemented as a local model for the popular X-ray spectral fitting program, XSPEC, and thus can be used for accurate fitting of the experimentally measured X-ray reflectivity data. DarpanX is implemented as a Python 3 module, and an API is provided to access the underlying algorithms. Here we present details of DarpanX implementation and its validation for different type multilayer structures. We also demonstrate the model fitting capability of DarpanX for experimental X-ray reflectivity measurements of single and multilayer samples.
Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-ra ys for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), is presented that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.
72 - D. Spiga , S. Basso , M. Bavdaz 2015
The optics of a number of future X-ray telescopes will have very long focal lengths (10 - 20 m), and will consist of a number of nested/stacked thin, grazing-incidence mirrors. The optical quality characterization of a real mirror can be obtained via profile metrology, and the Point Spread Function of the mirror can be derived via one of the standard computation methods. However, in practical cases it can be difficult to access the optical surfaces of densely stacked mirror shells, after they have been assembled, using the widespread metrological tools. For this reason, the assessment of the imaging resolution of a system of mirrors is better obtained via a direct, full-illumination test in X-rays. If the focus cannot be reached, an intra-focus test can be performed, and the image can be compared with the simulation results based on the metrology, if available. However, until today no quantitative information was extracted from a full-illumination, intra-focal exposure. In this work we show that, if the detector is located at an optimal distance from the mirror, the intensity variations of the intra-focal, full-illumination image in single reflection can be used to reconstruct the profile of the mirror surface, without the need of a wavefront sensor. The Point Spread Function can be subsequently computed from the reconstructed mirror shape. We show the application of this method to an intra-focal (8 m distance from mirror) test performed at PANTER on an optical module prototype made of hot-slumped glass foils with a 20 m focal length, from which we could derive an expected imaging quality near 16 arcsec HEW.
To enhance the reflectivity of X-ray mirrors beyond the critical angle, multilayer coatings are required. Interface imperfections in the multilayer growth process are known to cause non-specular scattering and degrade the mirror optical performance; therefore, it is important to predict the amount of X-ray scattering from the rough topography of the outer surface of the coating, which can be directly measured, e.g., with an Atomic Force Microscope (AFM). This kind of characterization, combined with X-ray reflectivity measurements to assess the deep multilayer stack structure, can be used to model the layer roughening during the growth process via a well-known roughness evolution model. In this work, X-ray scattering measurements are performed and compared with simulations obtained from the modeled interfacial Power Spectral Densities (PSDs) and the modeled Crossed Spectral Densities for all the couples of interfaces. We already used this approach in a previous work for periodic multilayers; we now show how this method can be extended to graded multilayers. The upgraded code is validated for both periodic and graded multilayers, with a good accord between experimental data and model findings. Doing this, different kind of defects observed in AFM scans are included in the PSD analysis. The subsequent data-model comparison enables us to recognize them as surface contamination or interfacial defects that contribute to the X-ray scattering of the multilayer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا