ﻻ يوجد ملخص باللغة العربية
The optics of a number of future X-ray telescopes will have very long focal lengths (10 - 20 m), and will consist of a number of nested/stacked thin, grazing-incidence mirrors. The optical quality characterization of a real mirror can be obtained via profile metrology, and the Point Spread Function of the mirror can be derived via one of the standard computation methods. However, in practical cases it can be difficult to access the optical surfaces of densely stacked mirror shells, after they have been assembled, using the widespread metrological tools. For this reason, the assessment of the imaging resolution of a system of mirrors is better obtained via a direct, full-illumination test in X-rays. If the focus cannot be reached, an intra-focus test can be performed, and the image can be compared with the simulation results based on the metrology, if available. However, until today no quantitative information was extracted from a full-illumination, intra-focal exposure. In this work we show that, if the detector is located at an optimal distance from the mirror, the intensity variations of the intra-focal, full-illumination image in single reflection can be used to reconstruct the profile of the mirror surface, without the need of a wavefront sensor. The Point Spread Function can be subsequently computed from the reconstructed mirror shape. We show the application of this method to an intra-focal (8 m distance from mirror) test performed at PANTER on an optical module prototype made of hot-slumped glass foils with a 20 m focal length, from which we could derive an expected imaging quality near 16 arcsec HEW.
For the reliable fabrication of the current and next generation of nanostructures it is essential to be able to determine their material composition and dimensional parameters. Using the grazing incidence X-ray fluoresence technique, which is taking
Astronomical X-ray observatories with grazing incidence optics face the problem of pseudo-focusing of low energy protons from the mirrors towards the focal plane. Those protons constitute a variable, unpredictable component of the non X-ray backgroun
We have developed an experimental system to simultaneously observe surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring X-ray photoel
The characterization of nanostructured surfaces with sensitivity in the sub-nm range is of high importance for the development of current and next generation integrated electronic circuits. Modern transistor architectures for e.g. FinFETs are realize
Grazing Incidence X-ray Diffraction (GIXD) studies of monolayers of biomolecules at the air-water interface give quantitative information of in-plane packing, coherence lengths of the ordered diffracting crystalline domains and the orientation of hyd