ترغب بنشر مسار تعليمي؟ اضغط هنا

X-Ray Absorption and Scattering by Interstellar Grains

218   0   0.0 ( 0 )
 نشر من قبل John Hoffman
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), is presented that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.



قيم البحث

اقرأ أيضاً

102 - M. Tanga , P. Schady , A. Gatto 2016
Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z > 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 per cubic centimeters) collisionally ionised ISM could produce UV/optical and soft X-ray absorbing column densities that differ by a factor of 10, however the UV/optical and soft X-ray absorbing column densities for such sightlines and are 2-3 orders of magnitude lower in comparison to the GRB afterglow spectra. For those GRBs with a larger soft X-ray excess of up to an order of magnitude, the contribution in absorption from a turbulent ISM as considered here would ease the required conditions of additional absorbing components, such as the GRB circumburst medium and intergalactic medium.
The abundances of gas and dust (solids and complex molecules) in the interstellar medium (ISM) as well as their composition and structures impact practically all of astrophysics. Fundamental processes from star formation to stellar winds to galaxy fo rmation all scale with the number of metals. However, significant uncertainties remain in both absolute and relative abundances, as well as how these vary with environment, e.g., stellar photospheres versus the interstellar medium (ISM). While UV, optical, IR, and radio studies have considerably advanced our understanding of ISM gas and dust, they cannot provide uniform results over the entire range of column densities needed. In contrast, X-rays will penetrate gas and dust in the cold (3K) to hot (100,000,000K) Universe over a wide range of column densities (log NH=20-24 cm^-2), imprinting spectral signatures that reflect the individual atoms which make up the gas, molecule or solid. *X-rays therefore are a powerful and viable resource for delving into a relatively unexplored regime for determining gas abundances and dust properties such as composition, charge state, structure, and quantity via absorption studies, and distribution via scattering halos.*
Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and co rresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.
The dense Galactic environment is a large reservoir of interstellar dust. Therefore, this region represents a perfect laboratory to study the properties of the cosmic dust grains. X-rays are the most direct way to detect the interaction of light with dust present in these dense environments. The interaction between the radiation and the interstellar matter imprints specific absorption features in the X-ray spectrum. We study them with the aim of defining the chemical composition, the crystallinity and structure of the dust grains which populate the inner regions of the Galaxy. We investigate the magnesium and the silicon K-edges detected in the Chandra/HETG spectra of eight bright X-ray binaries, distributed in the neighbourhood of the Galactic centre. We model the two spectral features using accurate extinction cross sections of silicates, that we have measured at the synchrotron facility Soleil, France. Near the Galactic centre magnesium and silicon show abundances similar to the solar ones and they are highly depleted from the gas phase ($delta_{rm{Mg}}>0.90$ and $delta_{rm{Si}}>0.96$). We find that amorphous olivine with a composition of $rm MgFeSiO_{4}$ is the most representative compound along all lines of sight according to our fits. The contribution of Mg-rich silicates and quartz is low (less than $10%$). On average we observe a percentage of crystalline dust equal to $11%$. For the extragalactic source LMC X-1, we find a preference for forsterite, a magnesium-rich olivine. Along this line of sight we also observe an underabundance of silicon $A_{rm Si}/A_{rm LMC} = 0.5pm0.2$.
104 - A.A. Lutovinov 2015
We present the results of the pulse phase- and luminosity-resolved spectroscopy of the transient X-ray pulsar V0332+53, performed for the first time in a wide luminosity range (1-40)x10^{37} erg/s during a giant outburst observed by the RXTE observat ory in Dec 2004 - Feb 2005. We characterize the spectra quantitatively and built the detailed three-dimensional picture of spectral variations with pulse phase and throughout the outburst. We show that all spectral parameters are strongly variable with the pulse phase, and the pattern of this variability significantly changes with luminosity directly reflecting the associated changes in the structure of emission regions and their beam patterns. Obtained results are qualitatively discussed in terms of the recently developed reflection model for the formation of cyclotron lines in the spectra of X-ray pulsars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا