ﻻ يوجد ملخص باللغة العربية
In analogy to the first law of thermodynamics, the increase in entanglement entropy $delta S$ of a conformal field theory (CFT) is proportional to the increase in energy, $delta E$, of the subsystem divided by an effective entanglement temperature, $T_E$. Extending this analogy, we study entanglement entropy when the subsystem is perturbed by applying an external field, expressed as a coupling to a local marginal operator in the CFT. We show that the resulting entropy change is associated with a change in the entanglement temperature itself, leading to an equation analogous to the Clausius relation. Using AdS/CFT duality we develop a relationship between a perturbation in the local entanglement temperature, $delta T_E(x)$ of the CFT and the perturbation of the bulk AdS metric. Using the AdS$_3$ minimal surface as a probe, we can construct bulk metric perturbations from an exact numerical computation of the entanglement temperature in a two dimensional $c=1$ boundary theory deformed by a marginal perturbation.
Based on gauge-gravity duality, by using holographic entanglement entropy, we have done a phenomenological study to probe confinement-deconfinement phase transition in the QCD-like gauge theory. Our outcomes are in perfect agreement with the expected
We study quantum corrections to holographic entanglement entropy in AdS$_3$/CFT$_2$; these are given by the bulk entanglement entropy across the Ryu-Takayanagi surface for all fields in the effective gravitational theory. We consider bulk $U(1)$ gaug
The Ryu-Takayanagi conjecture contradicts $1+1$-dimensional CFT if we apply it to two far disjoint intervals because it predicts the product state. Instead of the conventional conjecture, we propose a holographic entanglement entropy formula that the
We continue our study of string theory in a background that interpolates between $AdS_3$ in the infrared and a linear dilaton spacetime $R^{1,1}times R_phi$ in the UV. This background corresponds via holography to a $CFT_2$ deformed by an operator of
We continue our study of a general class of $mathcal{N}=2$ supersymmetric $AdS_3times Y_7$ and $AdS_2times Y_9$ solutions of type IIB and $D=11$ supergravity, respectively. The geometry of the internal spaces is part of a general family of GK geometr