ﻻ يوجد ملخص باللغة العربية
The Ryu-Takayanagi conjecture contradicts $1+1$-dimensional CFT if we apply it to two far disjoint intervals because it predicts the product state. Instead of the conventional conjecture, we propose a holographic entanglement entropy formula that the entanglement entropy of two disjoint intervals is described by the appropriate sum of the area of signed extremal curves. We confirm that the resulting holographic entanglement entropy is consistent with the entanglement entropy for the specific two disjoint intervals evaluated in the large $c$ limit CFT.
Understanding quantum entanglement in interacting higher-dimensional conformal field theories is a challenging task, as direct analytical calculations are often impossible to perform. With holographic entanglement entropy, calculations of entanglemen
We investigate the holographic entanglement entropy of deformed conformal field theories which are dual to a cutoff AdS space. The holographic entanglement entropy evaluated on a three-dimensional Poincare AdS space with a finite cutoff can be reinte
We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in f
We consider the refinement of the holographic entanglement entropy for the holographic dual theories to the AdS solitons and AdS black holes, including the corrected ones by the Gauss-Bonnet term. The refinement is obtained by extracting the UV-indep
We conjecture the Quantum Spectral Curve equations for string theory on $AdS_3 times S^3 times T^4$ with RR charge and its CFT$_2$ dual. We show that in the large-length regime, under additional mild assumptions, the QSC reproduces the Asymptotic Bet