ﻻ يوجد ملخص باللغة العربية
We continue our study of string theory in a background that interpolates between $AdS_3$ in the infrared and a linear dilaton spacetime $R^{1,1}times R_phi$ in the UV. This background corresponds via holography to a $CFT_2$ deformed by an operator of dimension $(2,2)$. We discuss the structure of spatial entanglement in this model, and compare it to the closely related $Tbar T$ deformed $CFT_2$.
We investigate the holographic entanglement entropy of deformed conformal field theories which are dual to a cutoff AdS space. The holographic entanglement entropy evaluated on a three-dimensional Poincare AdS space with a finite cutoff can be reinte
We consider string theory on AdS$_3$ $times$ (S$^3$ $times$ S$^3$ $times$ S$^1)/mathbb Z_2$, a background supporting $mathcal N=(3,3)$ spacetime supersymmetry. We propose that string theory on this background is dual to the symmetric product orbifold
We consider the refinement of the holographic entanglement entropy for the holographic dual theories to the AdS solitons and AdS black holes, including the corrected ones by the Gauss-Bonnet term. The refinement is obtained by extracting the UV-indep
In analogy to the first law of thermodynamics, the increase in entanglement entropy $delta S$ of a conformal field theory (CFT) is proportional to the increase in energy, $delta E$, of the subsystem divided by an effective entanglement temperature, $
Based on gauge-gravity duality, by using holographic entanglement entropy, we have done a phenomenological study to probe confinement-deconfinement phase transition in the QCD-like gauge theory. Our outcomes are in perfect agreement with the expected