ترغب بنشر مسار تعليمي؟ اضغط هنا

Implicit Lagrange-Routh Equations and Dirac Reduction

75   0   0.0 ( 0 )
 نشر من قبل Tom Mestdag
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we make a generalization of Rouths reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained from the Hamilton-Pontryagin principle, by making use of an anholonomic frame, and how these equations can be reduced. To do this, we keep the momentum constraint implicit throughout and we make use of a Routhian function defined on a certain submanifold of the Pontryagin bundle. Then, we show how the reduced implicit Lagrange-Routh equations can be described in the context of dynamical systems associated to Dirac structures, in which we fully utilize a symmetry reduction procedure for implicit Hamiltonian systems with symmetry.



قيم البحث

اقرأ أيضاً

129 - Timothy E. Goldberg 2010
In this paper, we develop results in the direction of an analogue of Sjamaar and Lermans singular reduction of Hamiltonian symplectic manifolds in the context of reduction of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman). Specifically, we prove that if a compact Lie group acts on a generalized complex manifold in a Hamiltonian fashion, then the partition of the global quotient by orbit types induces a partition of the Lin-Tolman quotient into generalized complex manifolds. This result holds also for reduction of Hamiltonian generalized Kahler manifolds.
This paper develops the theory of Dirac reduction by symmetry for nonholonomic systems on Lie groups with broken symmetry. The reduction is carried out for the Dirac structures, as well as for the associated Lagrange-Dirac and Hamilton-Dirac dynamica l systems. This reduction procedure is accompanied by reduction of the associated variational structures on both Lagrangian and Hamiltonian sides. The reduced dynamical systems obtained are called the implicit Euler-Poincare-Suslov equations with advected parameters and the implicit Lie-Poisson-Suslov equations with advected parameters. The theory is illustrated with the help of finite and infinite dimensional examples. It is shown that equations of motion for second order Rivlin-Ericksen fluids can be formulated as an infinite dimensional nonholonomic system in the framework of the present paper.
214 - Yuji Hirota , Tosiaki Kori 2021
We shall give a twisted Dirac structure on the space of irreducible connections on a SU(n)-bundle over a three-manifold, and give a family of twisted Dirac structures on the space of irreducible connections on the trivial SU(n)-bundle over a four-man ifold. The twist is described by the Cartan 3-form on the space of connections. It vanishes over the subspace of flat connections. So the spaces of flat connections are endowed with ( non-twisted ) Dirac structures. The Dirac structure on the space of flat connections over the three-manifold is obtained as the boundary restriction of a corresponding Dirac structure over the four-manifold. We discuss also the action of the group of gauge transformations over these Dirac structures.
207 - Boris Khesin 2005
In this note we obtain the characterization for asymptotic directions on various subgroups of the diffeomorphism group. We give a simple proof of non-existence of such directions for area-preserving diffeomorphisms of closed surfaces of non-zero curv ature. Finally, we exhibit the common origin of the Monge-Ampere equations in 2D fluid dynamics and mass transport.
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks t o a particular radial ansatz, which also allows to provide the exact asymptotic behavior of spinor components. Moreover, those solutions admit a variational characterization. We also indicate how the content of the present paper allows to extend our previous results for the massive case [5] to more general nonlinearities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا