ﻻ يوجد ملخص باللغة العربية
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks to a particular radial ansatz, which also allows to provide the exact asymptotic behavior of spinor components. Moreover, those solutions admit a variational characterization. We also indicate how the content of the present paper allows to extend our previous results for the massive case [5] to more general nonlinearities.
We consider the stability problem for standing waves of nonlinear Dirac models. Under a suitable definition of linear stability, and under some restriction on the spectrum, we prove at the same time orbital and asymptotic stability. We are not able t
We consider the small time semi-classical limit for nonlinear Schrodinger equations with defocusing, smooth, nonlinearity. For a super-cubic nonlinearity, the limiting system is not directly hyperbolic, due to the presence of vacuum. To overcome this
We consider the propagation of wave packets for a one-dimensional nonlinear Schrodinger equation with a matrix-valued potential, in the semi-classical limit. For an initial coherent state polarized along some eigenvector, we prove that the nonlinear
We prove, by a shooting method, the existence of infinitely many solutions of the form $psi(x^0,x) = e^{-iOmega x^0}chi(x)$ of the nonlinear Dirac equation {equation*} iunderset{mu=0}{overset{3}{sum}} gamma^mu partial_mu psi- mpsi - F(bar{psi}psi)psi
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, t