ﻻ يوجد ملخص باللغة العربية
In this note we obtain the characterization for asymptotic directions on various subgroups of the diffeomorphism group. We give a simple proof of non-existence of such directions for area-preserving diffeomorphisms of closed surfaces of non-zero curvature. Finally, we exhibit the common origin of the Monge-Ampere equations in 2D fluid dynamics and mass transport.
We find normal forms for parabolic Monge-Ampere equations. Of these, the most general one holds for any equation admitting a complete integral. Moreover, we explicitly give the determining equation for such integrals; restricted to the analytic case,
We establish a simple relation between curvatures of the group of volume-preserving diffeomorphisms and the lifespan of potential solutions to the inviscid Burgers equation before the appearance of shocks. We show that shock formation corresponds to
We prove that generalised Monge-Ampere equations (a family of equations which includes the inverse Hessian equations like the J-equation, as well as the Monge-Ampere equation) on projective manifolds have smooth solutions if certain intersection numb
We prove that integrability of a dispersionless Hirota type equation implies the symplectic Monge-Ampere property in any dimension $geq 4$. In 4D this yields a complete classification of integrable dispersionless PDEs of Hirota type through a list of
We characterize when radial weak solutions to Monge-Ampere equations are smooth. This paper extends previous partial results and also covers Generalized Monge-Ampere equations and infinitely vanishing right hand side.